Оценка качества микроэлектронных изделий по результатам измерений - Реферат

бесплатно 0
4.5 124
Обзор результатов исследований по выбору и практической реализации математических методов предварительного анализа и статистической обработке экспериментальных данных. Разработка программной библиотеки статистических методов и апробация выбранных методов.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
В процессе опытной отработки технологии изготовления ИМС, а также при проектировании прибора/схемы/системы инженеру-проектировщику важно учитывать и оптимизировать множество факторов (флуктуации параметров технологических процессов формирования ИМС, адекватность и корректная интерпретация результатов измерений тестовых структур), оказывающих влияние на выходные характеристики создаваемых изделий. Результаты измерения и моделирования, используемые на различных этапах изготовления и проектирования ИМС для расчета статистических оценок, проведения статистического анализа и аппроксимации, зачастую содержат ошибки и погрешности, которые могут существенно сказываться на адекватности результатов статистических исследований. На практике для предотвращения подобных случаев необходимо проводить предварительный анализ и статистическую обработку полученных экспериментальных результатов. Предварительная обработка результатов измерений или компьютерного проектирования необходима для того, чтобы в дальнейшем с наибольшей эффективностью, а главное - корректно, использовать для построения эмпирических зависимостей статистические методы.Для пояснения роли и места основных приемов статистического моделирования и методов первичной статистической обработки исходных данных ее проведение следует условно разбить на основные этапы исследования. Предварительная статистическая обработка данных не предусматривает строго определенного алгоритма, то есть последовательность действий определяется исследователем на основании предварительного анализа экспериментальных данных, представленных графически или в виде таблицы, а также исходя из поставленных целей. На первом этапе осуществляется анализ исходных данных, в частности, изучается характер распределения случайных величин, входящих в выборку. Представление данных в виде гистограмм, временных диаграмм, упорядоченных таблиц позволяет исследователю выбрать критерии оптимальные для решения конкретной поставленной задачи. Соответствие исходных данных выбранной статистической модели (распределению) является обязательным условием адекватного статистического анализа, которое дает возможность эффективно решать практические задачи, связанные с планированием производства, обеспечением качества продукции, оценкой технологичности производства, а также выбора адекватной статистической модели.Из всей совокупности экспериментальных данных было отобрано шесть выборок из 50 наблюдений и шесть выборок из 10 наблюдений, при этом выбирались измерения с резко различающимися свойствами. На первом этапе проверки предложенной методики предварительной обработки данных использовались выборки относительно большого объема. В качестве исходных данных использовались результаты измерения поверхностного сопротивления резисторов в слое «База», Ом (выборки X1, X4, X6); поверхностного сопротивления резисторов в слое «N стоки», Ом (выборки X2, X5); поверхностного сопротивления резисторов в слое «Нелегированный ПКК», КОМ (выборка X3). Применение критериев Аббе-Линника, Кокса-Стюарта, автокорреляции и критериев «восходящий» и «нисходящий серий» для различных уровней значимости позволяет сделать вывод о наличии тренда в выборках X2 и X3. В качестве исходных данных использовались результаты измерения поверхностного сопротивления резисторов в слое «Доп. охрана», КОМ (выборка X1); поверхностного сопротивления резисторов в слое «База», Ом (выборки X2); тока стока NМОП-транзистора, МА (выборка X3); порогового напряжения NМОП-транзистора, МВ (выборки X4, X6); порогового напряжения РМОП-транзистора, МВ (выборка X5).В результате проведенных исследований проанализированы и выбраны наиболее эффективные, с точки зрения алгоритмизации и применения в микроэлектронике, методы предварительного анализа и статистической обработки данных, получаемых как в процессе проектирования, так и в процессе изготовления ИМС. Следует отметить, что выбор использованных выше статистических методов предварительной обработки экспериментальных данных, критериев, их характеризующих, производится исходя из характера экспериментальных данных, требуемой степени обработки, а главное - основываясь на априорной информации об анализируемых характеристиках приборов и технологических процессах.

План
Содержание

Введение

1. Методика

2. Результаты

Заключение

Список использованных источников

Введение
Достижение высокого уровня технологичности производства и максимального выхода годных изделий - основные задачи для технологов и разработчиков интегральных микросхем. В процессе опытной отработки технологии изготовления ИМС, а также при проектировании прибора/схемы/системы инженеру-проектировщику важно учитывать и оптимизировать множество факторов (флуктуации параметров технологических процессов формирования ИМС, адекватность и корректная интерпретация результатов измерений тестовых структур), оказывающих влияние на выходные характеристики создаваемых изделий. Эффективным инструментом решения указанных задач является проведение статистического анализа и оптимизации на всех этапах проектирования технологии/прибора/схемы/ системы [1], [2].

Результаты измерения и моделирования, используемые на различных этапах изготовления и проектирования ИМС для расчета статистических оценок, проведения статистического анализа и аппроксимации, зачастую содержат ошибки и погрешности, которые могут существенно сказываться на адекватности результатов статистических исследований. Кроме того, процедура формирования данных не всегда соответствует предъявляемым требованиям, что приводит к неоднородным и неслучайным наблюдениям. Наконец, полученные данные могут отклоняться от предполагаемой исследователем статистической модели, что исключает возможность корректного статистического анализа. На практике для предотвращения подобных случаев необходимо проводить предварительный анализ и статистическую обработку полученных экспериментальных результатов. Предварительная обработка результатов измерений или компьютерного проектирования необходима для того, чтобы в дальнейшем с наибольшей эффективностью, а главное - корректно, использовать для построения эмпирических зависимостей статистические методы. Соответственно задача анализа сводится к выбору наилучшей процедуры обработки данных. Вопросы, решаемые при обработке результатов эксперимента, включают подбор эмпирических формул и оценку их параметров, оценку истинных значений измеряемых величин и точности измерений, применимость методов математической статистики и теории вероятностей и, наконец, проведение статистической обработки без потери важной информации в данных.

В работе представлены результаты исследований по выбору и практической реализации математических методов предварительного анализа и статистической обработки экспериментальных данных. Основными задачами при этом являются разработка программной библиотеки статистических методов и апробация выбранных методов на данных, полученных при промышленных измерениях результатов формирования элементов ИМС. статистический математический апробация программный

Вывод
Эффективность предложенной методики проверена на примере предварительной статистической обработки результатов измерения параметров изделий микроэлектроники. В условиях опытно-промышленного производства УП «Завод полупроводниковых приборов» разрабатывалась и исследовалась стойкая к воздействию субмикронная технология и элементная база для изготовления КМОП ИМС с проектными нормами 0,35 мкм, предназначенными для использования в устройствах специального применения. Характерными особенностями технологии являются: - бесклювная LOCOS-изоляция;

- два уровня металлизации с вольфрамовыми столбиками в качестве контактов;

- подзатворный окисел толщиной 7 нм;

- формирование «холодных» карманов на высокой энергии;

- CMP-планаризация.

На одном из этапов отработки технологии был предусмотрен эксперимент по реализации диффузионных резисторов в различных слоях (N , P , нелегированный ПКК, легированный ПКК) с формированием силицида (полицида) титана для снижения контактного сопротивления. Анализ начинался с контроля внешнего вида изготовленных пластин на наличие явных дефектов, на следующем этапе проводился замер вольтамперных характеристик. После ручной проверки правильности замеров проводилась обработка результатов измерений и выбор образцов для более глубокого анализа вольтамперных характеристик. Для измерений цепочек контактов и сопротивлений диффузионных резисторов типовая методика измерений вольтамперных характеристик с отбраковкой по нормам, соответствующим технической документации, оказалась непригодной. Вместо предполагаемого измерения путем задания тока и снятия напряжения было введено измерение на напряжении 1,5 В и 3 В с дальнейшим сравнением полученных результатов между собой (считая сопротивление линейным при разнице менее10 %). Вследствие этого потребовался углубленный анализ и статистическая обработка результатов измерений с целью выделения области воспроизводимости характеристик приборов. Из всей совокупности экспериментальных данных было отобрано шесть выборок из 50 наблюдений и шесть выборок из 10 наблюдений, при этом выбирались измерения с резко различающимися свойствами.

А. Статистическая обработка выборок большого объема

На первом этапе проверки предложенной методики предварительной обработки данных использовались выборки относительно большого объема. В качестве исходных данных использовались результаты измерения поверхностного сопротивления резисторов в слое «База», Ом (выборки X1, X4, X6); поверхностного сопротивления резисторов в слое «N стоки», Ом (выборки X2, X5); поверхностного сопротивления резисторов в слое «Нелегированный ПКК», КОМ (выборка X3). Для оценки закона распределения данных выборок были построены гистограммы распределения. Однако, без предварительной обработки результатов измерений, опытные данные могут содержать выбросы, что существенно искажает их графическое представление (рис. 1).

Рисунок 1 - Гистограммы распределения выборки X4 до (а) и после (б) исключения выбросов

Проверка отклонения от нормального закона распределения исследуемых экспериментальных выборок осуществлялась с помощью приведенных выше критериев с различным уровнем доверительной вероятности. В целом можно отметить отклонение от нормальности закона распределения выборок X3, X4, X5, X6, однако, при этом критерии Дэвида-Хартли-Пирсона и Шапиро-Франчиа иногда показывали результаты отличные от общей массы оценок. Представление о характере наблюдений также можно получить, представив их в виде временного ряда (рис. 2,а). Вместе с временным рядом горизонтальной линией отмечено среднее арифметической значение всей выборки. Как видно, даже при таком представлении данных иногда возникают проблемы, связанные с наличием резко выделяющихся наблюдений (рис. 2,б).

Рисунок 2 - Временной ряд выборок X2 (а) и X4 (б)

Тем не менее, диаграммы позволяют судить о некоторых свойствах опытных данных. Так для выборок X2 и X3 заметно наличие характерного тренда, а результаты измерений в выборке X6 явно неоднородны. Эффективным средством для проверки гипотезы о наличии тренда являются критерии случайности. Применение критериев Аббе-Линника, Кокса-Стюарта, автокорреляции и критериев «восходящий» и «нисходящий серий» для различных уровней значимости позволяет сделать вывод о наличии тренда в выборках X2 и X3. Кроме того, для низкого уровня значимости не подтвердилась гипотеза о случайном характере выборки X5. Следует отметить, что использование критериев случайности не всегда позволяет получать справедливые оценки. Это обусловлено тем, что характеристики полупроводниковых приборов не распределены на пластине случайным образом, а имеют четкую пространственную зависимость, связанную с технологией изготовления приборов, а также со свойствами самой пластины. Часто применяемый метод последовательного измерения случайных точек может приводить к получению циклического характера таких характеристик. Таким образом, критерии тренда и случайности скорее позволяют исследовать свойства метода формирования выборки, нежели свойства самих наблюдений. Даже при визуальной оценке временных рядов становится очевидным наличие выбросов в выборках X4 и X5. Для получения объективной информации о наличии выбросов в выборках следует воспользоваться критериями Шовене, Смирнова-Граббса, Титьена-Мура, и Роснера. Для методов исключения одного резко выделяющегося наблюдения был применен подход, при котором сначала отсеивалось одно аномальное значение, после чего процедура проверки повторялась. При реализации метода Титьена-Мура количество подозрительных наблюдений выбиралось исходя из оценок других критериев. Следует отметить, что ни один из предложенных критериев не обеспечивает получение адекватных результатов для всех рассматриваемых выборок, хотя предпочтительнее других выглядит критерий Роснера, который удобен тем, что не требует итеративного подхода и позволяет автоматически оценивать количество выбросов в выборке. Тем не менее, при его использовании возникают трудности при анализе выборок с незначительной дисперсией основной массы (выборка X4). Наиболее строгим из предложенных критериев является критерий Смирнова-Граббса, исключающий только существенные отклонения в ряду данных. Критерий Шовене представляет особый интерес в силу того, что для выборки X6 ему удалось выделить неоднородность в наблюдениях. Таким образом, корректное решение о необходимости исключения резко выделяющихся наблюдений можно принять только на основании анализа всех критериев. Исключив из выборок аномальные наблюдения можно получить адекватное представление выборки X4. Для анализа же выборки X6 необходимо, исходя из интуитивных соображений, разделение всех данных на две подвыборки без исключения каких-либо подозрительных наблюдений. Дальнейший анализ подтвердил предположение о сложном характере исследуемых данных и наличия разрыва в ряду наблюдений.

Б. Статистическая обработка выборок малого объема

На втором этапе проверки предложенной методики предварительной обработки данных использовались выборки малого объема. В качестве исходных данных использовались результаты измерения поверхностного сопротивления резисторов в слое «Доп. охрана», КОМ (выборка X1); поверхностного сопротивления резисторов в слое «База», Ом (выборки X2); тока стока NМОП-транзистора, МА (выборка X3); порогового напряжения NМОП-транзистора, МВ (выборки X4, X6); порогового напряжения РМОП-транзистора, МВ (выборка X5). Однако, графическое представление результатов измерений как в виде гистограмм распределения, так и в виде временных рядов не дает представление о свойствах данных: законе распределения, случайности выборочных данных и наличии неоднородности. Применение статистических процедур для проверки соответствия нормальному закону распределения, а также гипотезы о наличии тренда также неэффективно для выборок малого объема. Во всех случаях, независимо от структуры данных, отклонение от нормального закона распределения не было подтверждено, кроме того, с высокой доверительной вероятностью принята гипотеза о случайности наблюдений для всех выборок. Исключение из набора данных с резко выделяющимися наблюдениями принципиально не меняет статистические оценки и выводы. Однако, сама процедура выделения выбросов в ряду данных имеет свою специфику для выборок малого объема. Так критерий Роснера в данном случае оказался наименее эффективным, при использовании данного критерия возникает ошибка исключения наблюдений, не являющихся аномальным для рассматриваемой выборки. В свою очередь точные результаты продемонстрировали критерии Граббса и Смирнова-Граббса, которые к тому же оказались весьма чувствительными к уровню доверительной вероятности, что позволяет проводить процедуру исключения резко выделяющихся наблюдений максимально гибко.

В. Сглаживание экспериментальных данных

На заключительном этапе проведен сравнительный анализ различных методов сглаживания экспериментальных данных, в ходе которого были адаптированы теоретические методы для обработки результатов измерения параметров приборов микроэлектроники. Базовым методом для сглаживания данных является метод скользящего среднего. Управление процедурой сглаживания для этого метода осуществлялось посредством задания размера окна сглаживания. Метод скользящего среднего оказался эффективным лишь для временных рядов, в которых отсутствует резкий тренд, при этом получается линейная функция сглаживания в значительной степени приближенная к исходной форме ряда. При использовании данного метода невозможно эффективно устранять резкие отклонения (выбросы) во временном ряду, а также сглаживать краевые точки в начале и конце выборки. Назначение различных весов для наблюдений в пределах окна сглаживания позволяет в меньшей степени искажать исходный временной ряд, но не решает основные проблемы метода. В некотором смысле, экспоненциальное сглаживание является разновидностью метода скользящего среднего с экспоненциально убывающими весом. Метод априорно позволяет сглаживать краевые точки ряда, а также обладает наибольшей гибкостью в управлении процессом сглаживания, но не позволяет исключать резко выделяющиеся наблюдения во временном ряду. Наиболее эффективен метод экспоненциального сглаживания для обработки относительно плавных временных рядов. Исследование метода скользящей медианы приводит к выводу, что метод обладает теми же недостатками, что и метод скользящего среднего, но с более высокой эффективностью устраняет выбросы в наборе данных, а кроме того позволяет использовать окна сглаживания четной размерности. Для того, чтобы устранить отсутствие сглаживания по краям исследуемой выборки, предложен метод оптимизированной медианной фильтрации, при использовании которого набор данных рассматривается не как временной ряд, а замкнутая последовательность данных (рис. 3). Как и в случае стандартного метода скользящей медианы процесс сглаживания контролируется шириной окна сглаживания (параметр ome).

Рисунок 3 - Результат применения метода оптимизированной скользящей медианыВ результате проведенных исследований проанализированы и выбраны наиболее эффективные, с точки зрения алгоритмизации и применения в микроэлектронике, методы предварительного анализа и статистической обработки данных, получаемых как в процессе проектирования, так и в процессе изготовления ИМС. Следует отметить, что выбор использованных выше статистических методов предварительной обработки экспериментальных данных, критериев, их характеризующих, производится исходя из характера экспериментальных данных, требуемой степени обработки, а главное - основываясь на априорной информации об анализируемых характеристиках приборов и технологических процессах. Используемая методика предварительного анализа и статистической обработки позволяет не только исключать аномальные наблюдения в выборочных данных, но и проводить процедуру сглаживания результатов измерения или моделирования. Это дает возможность сохранить экспериментальные данные в полном объеме, что зачастую является обязательным условием проводимого исследования. Эффективность предложенной методики продемонстрирована при обработке и интерпретации результатов измерения параметров полупроводниковых приборов. Учет полученных результатов, а также статистическая обработка на всех последующих этапах проектирования и изготовления ИМС, позволяют значительно повысить эффективность и точность статистического анализа и оптимизации в сквозном цикле проектирования технологии/прибора/схемы/системы.

Список литературы
[1] M. Krasikov, V. Nelayev, Stempitsky V., V. Syakerckii, End-to-end statistical process/device/circuit/system design. Proc. of SPIE. 2009. Vol. 7377-40.

[2] А.А. Кулешов, В.В. Нелаев, М.Г. Красиков, В.Р. Стемпицкий, В.С. Малышев. Статистический анализ данных с негауссовым распределением на примере измерения параметров КМОП-структур // Материалы IV-й МНТК «Проблемы проектирования и производства радиоэлектронных средств». Новополоцк, май 2008.

[3] Кобзарь. А.И. Прикладная математическая статистика. Для инженеров и научных сотрудников. М.: ФИЗМАЛИТ, 2006. - 816 с.

[4] Гайдышев И. Анализ и обработка данных: специальный справочник. - СПБ.: Питер, 2001. - 752с.

[5] Математическая обработка эксперимента, Л.З. Румшинский. Главная редакция физико-математической литературы изд-ва «Наука», 1971. - 210 с.

[6] Порядковые статистики. Г. Дэйвид. - М.: Наука. Главная редакция физико-математической литературы, 1979. - 336 с.

[7] Beale E. M. L., Little R. J. A, Missing Values in Multivariate Analysis. - Journ. Royal. Statist. Soc. 1975, Ser. B. vol. 37.

[8] SPSS: Statistical Package for the Social Sciences. Second edition. Mc Graw-Hill Book Company. N. Y., 1975.

[9] Эсбенсен К. Анализ многомерных данных. Избранные главы / Пер. с англ. С.В. Кучерявского; Под.ред. О.Е. Родионовой. - Черноголовка: Изд-во ИПХФ РАН, 2005.

[10] Справочник по прикладной статистике. В 2-х т. Т.2: Пер. с англ. / Под ред. Э. Ллойда, У. Ледермана, С.А. Айвазяна, Ю.Н. Тюрина. - М.: Финансы и статистика, 1990. - 528 с.

[11] Т. Андерсон. Статистический анализ временных рядов: Пер. с англ. / Под ред. Ю.К. Беляева. - М.: Мир, 1976.

[12] Jose Nuno Lima, Joao Casaca. Smoothing GNSS Time Series with Asymmetric Simple Moving Averages // Symposium on Deformation Measurment and Analysis. 2008.

[13] Тьюки, Дж. Анализ результатов наблюдений. Разведочный анализ: Пер. с англ. / Под ред. В. Ф. Писаренко. - М.: Мир, 1981.

[14] Philipp K. Janert. Exponential Smoothing. 2006.

[15] Ruey-Chyn Tsaur. Further Examination to Fuzzy Exponential Smoothing Model. - Journal of the Chinese Institute of INDUSTRIALENGINEERS. 2005. Vol. 22. No. 6.

Размещено на .ru

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?