Определение свойств тел и их поведения в электрическом поле. Рассмотрение образования электронов проводимости в полупроводниках на примере кремния. Процесс проводимости в чистых полупроводниках. Контакт полупроводников с различными типами проводимости.
При низкой оригинальности работы "Особенности полупроводников, их отличие от проводников и диэлектриков", Вы можете повысить уникальность этой работы до 80-100%
Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Кафедра «Электроэнергетика и электротехника» Реферат по дисциплине: «Электроника» Тема: Особенности полупроводников, их отличие от проводников и диэлектриковВ зависимости от характера действия на тела электрического поля их можно разделить на проводники, диэлектрики и полупроводники. В нормальном состоянии атом электрически нейтрален, так как число протонов, входящих в состав ядра атома, равно числу электронов, вращающихся вокруг ядра и образующих «электронные оболочки» атома. Ширина запретной зоны, которую должен преодолеть электрон, чтобы перейти из устойчивого состояния в свободное состояние (в зону проводимости), является одним из главных критериев разделения тел на проводники, полупроводники и диэлектрики. Граница между полупроводниками и диэлектриками условна, так как диэлектрики при высоких температурах могут вести себя как полупроводники, а чистые полупроводники при низких температурах ведут себя как диэлектрики. Следовательно, в полупроводнике имеются два типа носителей тока - электроны и дырки, а общая проводимость полупроводника является суммой электронной проводимости (n-типа, от слова negative) и дырочной проводимости (р-типа, от слова positive).И в металле под действием электрического поля электрон свободно переходит с уровня на уровень. Легкая возможность перехода с уровня на уровень и означает свободное движение электрона.
План
Оглавление
Введение
Особенности полупроводников
Образование электронов проводимости
Легирование
Типы полупроводников p-n переход в полупроводниках
Заключение
Список литературы
Введение
В зависимости от характера действия на тела электрического поля их можно разделить на проводники, диэлектрики и полупроводники. Свойства тел и поведение их в электрическом поле определяются строением и расположением атомов в телах. В состав атомов входят электрически заряженные частицы: положительные - протоны, отрицательные - электроны. В нормальном состоянии атом электрически нейтрален, так как число протонов, входящих в состав ядра атома, равно числу электронов, вращающихся вокруг ядра и образующих «электронные оболочки» атома. Электроны внешней валентной оболочки определяют электропроводность вещества. Энергетические уровни внешних валентных электронов образуют валентную, или заполненную зону. В этой зоне электроны находятся в устойчивом связанном состоянии. Чтобы освободить какой-либо электрон этой зоны, необходимо затратить некоторую энергию. Следовательно, электроны, находящиеся в свободном состоянии, занимают более высокие энергетические уровни. Зона более высоких энергетических уровней, расположенная выше валентной зоны и отделенная от нее запрещенной зоной, объединяет незаполненные, или свободные, энергетические уровни и называется зоной проводимости или зоной возбуждения. Чтобы электрон перенести из валентной зоны в зону проводимости, необходимо ему сообщить извне энергию. Ширина запретной зоны, которую должен преодолеть электрон, чтобы перейти из устойчивого состояния в свободное состояние (в зону проводимости), является одним из главных критериев разделения тел на проводники, полупроводники и диэлектрики.
Особенности полупроводников
Полупроводниками называют вещества, удельная проводимость которых имеет промежуточное значение между удельными проводимостями металлов и диэлектриков. Полупроводники одновременно являются плохими проводниками и плохими диэлектриками. Граница между полупроводниками и диэлектриками условна, так как диэлектрики при высоких температурах могут вести себя как полупроводники, а чистые полупроводники при низких температурах ведут себя как диэлектрики. В металлах концентрация электронов практически не зависит от температуры, а в полупроводниках носители заряда возникают лишь при повышении температуры или при поглощении энергии от другого источника.
Полупроводниками являются вещества, ширина запрещенной зоны которых составляет порядка нескольких электрон-вольт (ЭВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия (INAS) - к узкозонным. Почти все неорганические вещества окружающего нас мира - полупроводники. Типичными полупроводниками являются углерод (C), германий (Ge) и кремний (Si).
Самым распространенным в природе полупроводником является кремний, составляющий почти 30 % земной коры. Кремний был открыт в 1823 году. Он широко распространен в земной коре в виде кремнезема (двуокиси кремния), силикатов и алюмосиликатов. Двуокисью кремния богаты песок, кварц, агат и кремень. Из двуокиси кремния химическим путем получают чистый кремний. Кремний является наиболее широко используемым полупроводниковым материалом.
Германий - это хрупкий серовато-белый элемент, открытый в 1886 году. Источником порошкообразной двуокиси германия, из которой получают твердый чистый германий, являются золы некоторых сортов угля.
Образование электронов проводимости
Рассмотрим подробнее образование электронов проводимости в полупроводниках на примере кремния. Атом кремния имеет порядковый номер Z=14 в периодической системе Д. И. Менделеева. Поэтому в состав его атома входят 14 электронов. Однако только 4 из них находятся на незаполненной внешней оболочке и являются слабо связанными. Эти электроны называются валентными и обуславливают четыре валентности кремния. Атомы кремния способны объединять свои валентные электроны с другими атомами кремния с помощью так называемой ковалентной связи (рис. 1). При ковалентной связи валентные электроны совместно используются различными атомами, что приводит к образованию кристалла.
При повышении температуры кристалла тепловые колебания решетки приводят к разрыву некоторых валентных связей. В результате этого часть электронов, ранее участвовавших в образовании валентных связей, отщепляется и становится электронами проводимости. При наличии электрического поля они перемещаются против поля и образуют электрический ток.
Рис. 1
Однако, при освобождении электрона в кристаллической решетке образуется незаполненная межатомная связь. Такие «пустые» места с отсутствующими электронами связи получили название «дырок». Возникновение дырок в кристалле полупроводника создает дополнительную возможность для переноса заряда. Действительно, дырка может быть заполнена электроном, перешедшим под действием тепловых колебаний от соседнего атома. В результате на этом месте будет восстановлена нормальная связь, но зато в другом месте появится дырка. В эту новую дырку в свою очередь может перейти какой-либо из других электронов связи и т.д. Последовательное заполнение свободной связи электронами эквивалентно движению дырки в направлении, противоположном движению электронов. Таким образом, если при наличии электрического поля электроны перемещаются против поля, то дырки будут двигаться в направлении поля, т.е. так, как двигались бы положительные заряды. Следовательно, в полупроводнике имеются два типа носителей тока - электроны и дырки, а общая проводимость полупроводника является суммой электронной проводимости (n-типа, от слова negative) и дырочной проводимости (р-типа, от слова positive).
Наряду с переходами электронов из связанного состояния в свободное существуют обратные переходы, при которых электрон проводимости улавливается на одно из вакантных мест электронов связи. Этот процесс называют рекомбинацией электрона и дырки. В состоянии равновесия устанавливается такая концентрация электронов (и равная ей концентрация дырок), при которой число прямых и обратных переходов в единицу времени одинаково.
Рассмотренный процесс проводимости в чистых полупроводниках называется собственной проводимостью. Собственная проводимость быстро возрастает с повышением температуры, и в этом существенное отличие полупроводников от металлов, у которых с повышением температуры проводимость уменьшается. Все полупроводниковые материалы имеют отрицательный температурный коэффициент сопротивления.
Чистые полупроводники являются объектом, главным образом, теоретического интереса. Основные исследования полупроводников связаны с влиянием добавления примесей в чистые материалы. Без этих примесей не было бы большинства полупроводниковых приборов.
Чистые полупроводниковые материалы, такие как германий и кремний, содержат при комнатной температуре небольшое количество электронно-дырочных пар и поэтому могут проводить очень маленький ток. Для увеличения проводимости чистых материалов используется легирование.
Легирование
Легирование - это добавление примесей в полупроводниковые материалы. Используются два типа примесей. Примеси первого типа - пятивалентные - состоят их атомов с пятью валентными электронами, например, мышьяк и сурьма. Примеси второго типа - трехвалентные - состоят из атомов с тремя валентными электронами, например, индий и галлий.
Рис. 2
Когда чистый полупроводниковый материал легируется пятивалентным материалом, таким как мышьяк (As), то некоторые атомы полупроводника замещаются атомами мышьяка (рис. 2). Атом мышьяка вводит четыре своих валентных электрона в ковалентные связи с соседними атомами. Его пятый электрон слабо связан с ядром и легко может стать свободным. Атом мышьяка называется донорским, поскольку он отдает свой лишний электрон. В легированном полупроводниковом материале находится достаточное количество донорских атомов, а, следовательно, и свободных электронов, для поддержания тока.
При комнатной температуре количество дополнительных свободных электронов превышает количество электронно-дырочных пар. Это означает, что в материале больше электронов, чем дырок. Поэтому электроны называют основными носителями. Дырки называют неосновными носителями. Поскольку основные носители имеют отрицательный заряд, такой материал называется полупроводником n-типа.
Когда полупроводниковый материал легирован трехвалентными атомами, например, атомами индия (In), то эти атомы разместят свои три валентных электрона среди трех соседних атомов (рис. 3). Это создаст в ковалентной связи дырку.
Наличие дополнительных дырок позволит электронам легко дрейфовать от одной ковалентной связи к другой. Так как дырки легко принимают электроны, атомы, которые вносят в полупроводник дополнительные дырки называются акцепторными.
Рис. 3
При обычных условиях количество дырок в таком материале значительно превышает количество электронов. Следовательно, дырки являются основными носителями, а электроны - неосновными. Поскольку основные носители имеют положительный заряд, материал называется полупроводником р-типа.
Полупроводниковые материалы n- и р-типов имеют значительно более высокую проводимость, чем чистые полупроводники. Эта проводимость может быть увеличена или уменьшена путем изменения количества примесей. Чем сильнее полупроводниковый материал легирован, тем меньше его электрическое сопротивление.
Типы полупроводников
Полупроводниковые соединения делят на несколько типов: • Простые полупроводниковые материалы - собственно химические элементы: бор B, углерод C, германий Ge, кремний Si, селен Se, сера S, сурьма Sb, теллур Te и йод I. Самостоятельное применение широко нашли германий, кремний и селен. Остальные чаще всего применяются в качестве легирующих добавок или в качестве компонентов сложных полупроводниковых материалов;
• В группу сложных полупроводниковых материалов входят химические соединения из двух, трех и более химических элементов. Полупроводниковые материалы из двух элементов называют бинарными, и так же, как это принято в химии, имеют наименование того компонента, металлические свойства которого выражены слабее. Так, бинарные соединения, содержащие мышьяк, называют арсенидами, серу - сульфидами, теллур - теллуридами, углерод - карбидами. Сложные полупроводниковые материалы объединяют по номеру группы Периодической системы элементов Д. И. Менделеева, к которой принадлежат компоненты соединения, и обозначают буквами латинского алфавита (A - первый элемент, B - второй и т. д.). Например, бинарное соединение фосфид индия INP имеет обозначение AIIIBV
Широкое применение получили следующие соединения: AIIIBV
• INSB, INAS, INP, GASB, GAP, ALSB, GAN, INN
AIIBV
• CDSB, ZNSB
AIIBVI
• ZNS, ZNSE, ZNTE, CDS, CDTE, HGSE, HGTE, HGS
AIVBVI
• PBS, PBSE, PBTE, SNTE, SNS, SNSE, GES, GESE а также некоторые окислы свинца, олова, германия, кремния, а также феррит, аморфные стекла и многие другие соединения (AIBIIIC2VI, AIBVC2VI, AIIBIVC2V, AIIB2IIC4VI, AIIBIVC3VI).
Соединения AIIIBV, в основном, применяются для изделий электронной техники, работающих на сверхвысоких частотах
Соединения AIIBV используют в качестве люминофоров видимой области, светодиодов, датчиков Холла, модуляторов.
Соединения AIIIBV, AIIBVI и AIVBVI применяют при изготовлении источников и приемников света, индикаторов и модуляторов излучений.
Окисные полупроводниковые соединения применяют для изготовления фотоэлементов, выпрямителей и сердечников высокочастотных индуктивностей. p-n переход в полупроводниках полупроводник проводимость электрон поле
Контакт двух полупроводников с различными типами проводимости называется p-n переходом и обладает очень важным свойством - его сопротивление зависит от направления тока. Отметим, что такой контакт нельзя получить, прижимая друг к другу два полупроводника. p-n переход создается в одной пластине полупроводника путем образования в ней областей с различными типами проводимости. Методы получения p-n переходов описаны ниже.
Итак, в куске монокристаллического полупроводника на границе между двумя слоями с различного рода проводимостями образуется p-n переход. На ней имеет место значительный перепад концентраций носителей зарядов. Концентрация электронов в n-области во много раз больше их концентрации в р-области. Вследствие этого электроны диффундируют в область их низкой концентрации (в р-область). Здесь они рекомбинируют с дырками и таким путем создают пространственный отрицательный заряд ионизированных атомов акцептора, не скомпенсированный положительным зарядом дырок.
Одновременно происходит диффузия дырок в n-область. Здесь создается не скомпенсированный зарядом электронов пространственный положительный заряд ионов донора. Таким образом, на границе создается двойной слой пространственного заряда (рис. 4), обедненный основными носителями тока. В этом слое возникает контактное электрическое поле Ек, препятствующее дальнейшему переходу электронов и дырок из одной области в другую.
Контактное поле поддерживает состояние равновесия на определенном уровне. Но и в этом случае под действием тепла небольшая часть электронов и дырок будет продолжать проходить через потенциальный барьер, обусловленный пространственными зарядами, создавая ток диффузии. Однако одновременно с этим под действием контактного поля неосновные носители заряда p- и n-областей (электроны и дырки) создают небольшой ток проводимости. В состоянии равновесия эти токи взаимно компенсируются.
Если к p-n переходу подключить внешний источник тока, то напряжение указанной на рис. 5 обратной полярности приведет к появлению внешнего поля E, совпадающего по направлению с контактным полем Ек. В результате ширина двойного слоя увеличится, и тока за счет основных носителей практически не будет. В цепи возможен лишь незначительный ток за счет неосновных носителей (обратный ток Іобр).
Рис. 4
Рис. 5
Рис. 6
При включении напряжения прямой полярности направление внешнего поля противоположно направлению контактного поля (рис. 6). Ширина двойного слоя уменьшится, и в цепи возникнет большой прямой ток Іпр. Таким образом, p-n переход обладает ярко выраженной односторонней проводимостью. Это выражает его вольтамперная характеристика (рис. 7).
Рис. 7
Когда к p-n переходу приложено прямое напряжение, то ток быстро возрастает с ростом напряжения. Когда же к p-n переходу приложено обратное напряжение, ток очень мал, быстро достигает насыщения и не изменяется до некоторого предельного значения обратного напряжения Uобр, после чего резко возрастает. Это так называемое напряжение пробоя, при котором наступает пробой p-n перехода и он разрушается. Следует отметить, что на рисунке 7 масштаб обратного тока в тысячу раз меньше масштаба прямого тока.
Вывод
У металлов зоны либо перекрываются между собой, либо не целиком заполнены электронами. И в металле под действием электрического поля электрон свободно переходит с уровня на уровень. Легкая возможность перехода с уровня на уровень и означает свободное движение электрона.
В полупроводниках и изоляторах заполненная зона отделяется от свободной энергетической щелью. Через эту запрещенную зону электроны могут переходить за счет тепловой энергии. Вероятность таких переходов увеличивается с ростом температуры. Поэтому с повышением температуры проводимость полупроводников и диэлектриков возрастает - это важнейшее их отличие от металлов. В свою очередь вблизи температуры абсолютного нуля полупроводники имеют свойства диэлектриков.
Список литературы
1) Синдеев Ю.Г., Грановский В.Г. Электротехника. Учебник для студентов педагогических и технических вузов. Ростов-на-Дону: «Феникс», 1999.
2) Лихачев В.Л. Электротехника. Справочник. Том 1./В.Л. Лихачев. М.: СОЛОН-Пресс, 2003.
3) Ремизов А.Н. Курс физики: Учебник для ВУЗОВ / А.Н. Ремизов, А.Я. Потапенко. М.: Дрофа, 2002.
4) Дмитриева В.Ф. Физика: Учебное пособие для техникумов./Под ред. В.Л. Прокофьева, 4-е изд., стер. М.: Высш. шк., 2001.
5) Зефиров Н. С. (гл. ред.). Химическая энциклопедия. Москва: Большая Российская Энциклопедия, 1995.
Размещено на .ru
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы