История развития, цели и задачи водной экологии. Структура гидросферы, круговорот и распределение водных ресурсов. Условия существования и жизненные формы гидробионтов, микроорганизмы водоемов, последствия антропогенного воздействия, защита экосистемы.
Цель лекции: введение в курс дисциплины Водная экология и гидробиология, а также ознакомление с основными направлениями и методами используемыми при гидробиологии для изучения элементов водной среды.Основная масса воды сосредоточена в морях и океанах - 94-98 %, в полярных льдах содержится около 1,2 % воды и совсем малая доля - менее 0,5 %, в пресных водах рек, озер и болот. Главная теоретическая задача гидробиологии: изучение общих внутренних закономерностей структурно-функциональной организации водных экосистем, которые и определяют круговорот вещества и поток энергии в них, а водной экологии: исследование зависимостей круговоротов вещества и потоков энергии от факторов внешней среды, в том числе и антропогенных. Гидробиология и водная экология тесно связаны, прежде всего, с науками о гидросфере - гидрохимией, гидрофизикой, гидрологией. Ectectrialo, являясь дисциплинами биологическими и географическими, гидробиология и водная экология, тем не менее, в первую очередь, теснейшим образом связаны с экологией, частями которой они являются. Главная теоретическая задача гидробиологии: изучение общих внутренних закономерностей структурно-функциональной организации водных экосистем, которые и определяют круговорот вещества и поток энергии в них, а водной экологии: исследование зависимостей круговоротов вещества и потоков энергии от факторов внешней среды, в том числе и антропогенных.Традиционно принято выделение следующей иерархии видов: руководящие (или "доминантные") виды; за ними следует группа "субдоминантов"; остальные же виды считаются второстепенными, среди которых отмечают случайные или редкие. К сожалению, этот идеальный по своей простоте индекс не отражает самого смысла доминирования, поскольку может принимать, например, значение 0.5 как при истинном доминировании, когда при нескольких сотнях видов один вид выражен половиной численности, так и в случае двух особей двух видов. В качестве оценок вероятностей независимых событий рі для формулы (4.6) могут быть использованы следующие апостериорные отношения: удtrialя численность i-го вида, как частное от деления его численности Ni на общую численность всех видов, взятых для анализа: pi = Ni / Ni; Классификация организмов по сапробности - это их классификация по сопротивляемости загрязнению (органической нагрузке, недостатку кислорода, присутствию соединений сероводорода), поскольку: сапробность (от греч. sapros - гнилой) - «это комплекс физиологических свойств данного организма, обуславливающий его способность развиваться в воде с тем или иным содержанием органических веществ, с той или иной степенью загрязнения».. В море нефть встречается в самых разных формах: мономолекулярные пленки, пленки толщиной до нескольких миллиметров, пленки на скалах, нефть в донных осадках, эмульсии «вода в нефти» или «нефть в воде», нефтяные агрегаты.Рыболовство, как и охота, - древнейшая отрасль производственной деятельности, связанной с удовлетворением насущных потребностей человека, ибо, как указывал К. Изобретение и применение орудий лова и простейших средств передвижения по воде способствовали расширению географии рыболовства. Уже в первом веке нашей эры римляне организовали морское рыболовство во многих странах, находившихся под их властью. С X-XI вв. русские мореходы, добывающие морского зверя, выходили из Белого моря в Северный Ледовитый океан, вели промысел у берегов Гренландии. Уже в X в. новгородские «рыболовные ватаги» постоянно промышляли в Белом море, осваивали Мурманский берег (Брейтфус, 1913).
Вывод
Каждый гидробионт приспособлен к питанию определенным кормом, его органы чувств, приспособлены к отысканию этого корма, ротовое отверстие - к захватыванию, кишечник - к перевариванию. Однако приспособленность к определенному кормлению не остается постоянной в течение всей жизни, она может меняться по мере роста. Например, у воблы - Rutilus rutilus caspicus (Jac.) в процессе развития происходит смена кормов, связанная с изменениями в ее строении. На первых этапах онтогенеза питается мелким малоподвижным растительным планктоном и коловратками, потом она переходит на питание планктонными ракообразными, на следующих этапах основу ее пищи составляют бентические личинки насекомых, главным образом мотыль, и, наконец, у взрослых основу пищи составляют моллюски. Соответственно с изменением состава корма в онтогенезе меняется и строение органов питания и пищеварения (Гирса, 1961).
- 55 -
Тема лекции№ 8: Водно-солевой баланс гидробионтов
Цель лекции: изучение водно-солевого баланса в организме гидробионтов различных групп.
Рассматриваемые вопросы: 1. Водно-солевой обмен у водных организмов 2. Пресноводная осморегуляция.
3. Осморегуляция в море. Костные рыбы.
4. Физиологический контроль осморегуляции. 1. Водно-солевой обмен у водных организмов
По степени солености естественные водоемы условно подразделяются на пресные с соленостью менее 0,5‰, солоноватоводные - соленость колеблется в пределах 0,5-16 и соленые - больше 16‰. Соленость океанических водоемов составляет 32-38% (в среднем 35%), но самое высокое содержание солей характеризует не морские, а некоторые внутренние водоемы типа соленых озер, где концентрация электролитов доходит до 37%. Естественно, обитание в столь различных условиях приводит к проявлению различного типа адаптации, но и их наличие практически никому не обеспечивает возможность обитания во всем диапазоне встречающихся на Земле вариантов солености.
По характеру водно-солевого обмена гидробионты довольно четко делятся на пресноводных и морских, хотя некоторые эвригалинные (От греч. euiys - широкий, halinos - соленый.) формы могут обитать и в тех, и в других условиях.
Для всех первичноводных организмов характерно наличие прtrialемых для воды покровов, поэтому различие осмотической концентрации водной среды и жидкостей организма создает осмотический ток воды в сторону большего осмотического давления. Результат осмотических процессов неодинаков для обитателей trialx типов водоемов.
Жизнь формировалась в морской воде, что наложило свой отпечаток на основные физико-химические показатели живых организмов. У большинства обитателей морских водоемов концентрация солей в организме близка к таковой окружающей среды, а благодаря проницаемости покровов любые изменения солености немедленно уравновешиваются осмотическим током воды. Такие организмы принято называть пойкилооосмотическими. (По отношению к растениям чаще употребляется термин “пойкилогидрические” - от слова “гидратура”, которым обозначается степень обводненности цитоплазмы (гидратура свободной воды - 100%).)Таковы практически все цианобактерии и низшие растения, а также большинство морских беспозвоночных животных; последних часто называют осмоконформерами. Животные, способные к активной регуляции осмотического давления жидкостей тела, поддерживают относительное постоянство этого параметра внутренней среды независимо от окружающей воды; таких животных называют гомойоосмоттестами, или осморегуляторами.
Первичноводные морские беспозвоночные в большинстве относятся к осмоконформерам. Осмотическое давление жидкостей их тела близко к таковому морской воды и изменяется параллельно изменениям внешней солености. Таких животных называют изотоничными. Впрочем, абсолютная изотоничность свойственна относительно немногим группам (кишечнополостные, иглокожие). У большинства других беспозвоночных регистрируется некоторые превышение осмотического давления внутренней среды организма (его гипертонтность), что обеспечивает постоянный приток в организм воды в пределах, легко уравновешивающихся процессами выделения. Так, для краба Carcinusmaenasотмечены следующие соотношения солености (‰) воды и жидкостей тела: Вода 0 0,9 1,9 3,4
Тело 1,48 1,65 1,99 3,09
- 56 -
Способность изотоничных животных переносить некоторые изменения солености среды определяется главным образом механизмами клеточной устойчивости к обводнению или дегидратации. Диапазон такой устойчивости обычно не очень велик, поэтому изоосмотические осмоконформеры распространены, как правило, в морских водоемах с относительно устойчивой соленостью. Беспозвоночным-осморегуляторам (высшие раки, моллюски, насекомые и некоторые другие) свойственно переносить более значительные колебания солености. Это обеспечивается механизмами активной регуляции осмотического давления внутренней среды, которые включают изменения проницаемости мембран, активный перенос ионов, а также изменения внутриклеточной концентрации свободных аминокислот в направлении, уравновешивающем суммарное осмотическое давление в клетке с внешней средой.
Эффект осморегуляторных реакций может быть достаточно заметным. Так, у мизиды Neomysisintergerпри солености среды ниже 20‰осуществляется гиперосмотическая регуляция (поддержание более высокого осмотического давления в организме), а при солености выше 20‰ - гипоосмотическая. В результате в диапазоне солености среды от 2 до примерно 30‰ концентрация жидкостей тела поддерживается на уровне около 20‰. Обитающий в соленых озерах рачок Artemiasalinaхарактеризуется довольно сложной осморегуляцией, напоминающей таковую у высших костных рыб (см. ниже): обитая в гипертонической среде, эти рачки компенсируют осмотические потери воды тем, что пьют соленую воду. Избыток солей активно выводится через жабры. В результате, хотя жидкость в пищеварительном тракте всегда содержит много солей, гемолимфа сохраняет гипотоничность по отношению к среде.
Осмотическое давление не связано с набором и количественным соотношением различных ионов в жидкостях тела, а определяется лишь суммой растворенных частиц. Поэтому у пойкилоосмотических организмов имеется возможность осуществления активной ионной регуляции, которая определяет отличия количественных показателей содержания отдельных ионов в среде и в организме. Это основа жизнедеятельности организмов-концентраторов, способных избирательно извлекать из среды и накапливать в организме отдельные соли. В отличие от осморегуляции ионная регуляция свойственна большинству живых организмов.
2.Пресноводная осморегуляция.
Среди пресноводных организмов изотоничных форм быть не может; концентрация жидкостей в их клетках и тканях всегда выше, чем в окружающей среде. Иными словами, пресноводные организмы гипертоничны, в силу чего внутрь организма направлен постоянный осмотический поток воды. Поэтому пресноводные гидробионты должны активно поддерживать осмотическое давление внутренней среды организма. Они относятся к гомойосмотическим формам.
У многих пресноводных животных различные покровные образования затрудняют проникновение воды через кожу (панцири, чешуя, слизь и т.п.). Однако полная изоляция организма от осмотического поступления воды невозможна, поскольку по меньшей мере эпителий органов дыхания и слизистой кишечника неизбежно контактирует с водой. Широко распространенным механизмом поддержания постоянства осмотического давления в организме является активное выведение избытка воды. В разных таксонах животного мира эта функция ложится на свойственные им органы выделения. Напряженность их работы прямо зависит от разницы осмотического давления вне и внутри организма. Примером могут быть результаты опытов с инфузорией туфелькой (ПОА.С. Константинову, 1967): Концентрация раствора 0 2,5 5,0 7,5 10,0 NACI, ‰
Выведение воды, в объемах 4,8 2,82 1,38 1,08 0,16 тела за 1 ч
- 57 -
Неизбежные потери солей с мочой и экскрементами компенсируются активным переносом ионов из окружающей среды против градиента концентрации. У некоторых животных этот процесс идет через всю поверхность тела, но главную роль в активном переносе играют жабры и подобные им образования. Показано, в частности, что так называемые анальные жабры водных личинок ряда видов насекомых в первую очередь служат органом осморегуляции, возможно, вообще не участвуя в дыхании.
Активные процессы пресноводной осморегуляции открывают возможность беспозвоночным-осморегуляторам заселять солоновоатоводные и даже соленые (до 30‰) водоемы.
Хороший пример развития системы пресноводной осморегуляции демонстрируют первичноводные позвоночные - круглоротые и рыбы. Предки их были морскими животными, но собственно подтип позвоночных эволюционно формировался в пресных или слабосоленых водах. Наиболее эффективная адаптация позвоночных к обитанию в гипотоической среде - образование клубочковых почек. Почка позвоночных животных с самого начала формировалась при ведущем значении именно осморегуляторной функции, тем более что продукты азотистого обмена - аммиак и мочевина - растворимы в воде и легко выводятся не только через почки, но и через жабры.
Специфическая черта строения почки рыб как органа осморегуляции - клубочковая система. В начальном участке почечных канальцев (нефронов) наряду с воронкой, открывающейся в полость тела, формируется замкнутый полый вырост - Боуменова капсула, внутри которого располагается клубочек кровеносных капилляров (рис. 5.1), представляющих ответвления от почечной артерии. В клубочке силой кровяного давления жидкая часть плазмы крови вытесняется из капилляров в просвет боуменовой капсулы, откуда попадает в извитой каналец нефрона. В состав этой жидкости (первичная моча) входит не только вода, но и растворенные вещества, частицы которых способны проникнуть сквозь стенки капилляров (ионы солей, молекулы Сахаров, мочевины и др.). Практически лишь белки с их крупной молекулой не попадают в состав первичной мочи. Процесс формирования первичной мочи называют ультрафильтрацией. Это основная функция клубочковой почки. Благодаря ультрафильтрации из организма все время выводится большое количество жидкости, что успешно компенсирует осмотическое обводнение.
- 58 -
Извитой каналец нефрона снаружи оплетен сетью кровеносных капилляров. Здесь происходит процесс реабсорбции - обратного всасывания в кровь солей, Сахаров и ряда других нужных организму веществ. В результате конечная моча оказывается гипотоничной по отношению к плазме крови. Таким образом, клубочковая система почек пресноводных рыб работает по фильтрационно-реабсорбционному принципу с выделением большого количества гипотонической мочи - порядка 10-20 см3 • кг-1.
Эффективное выведение избытка воды у пресноводных рыб сочетается с активными механизмами постоянного восстановления теряемых с мочой и экскрементами солей. В основном соли поступают в организм с пищей. Кроме того, важную роль в солевом обмене играет жаберный эпителий, специализированные клетки которого способны к активному захвату солей (главным образом одновалентных ионов) из окружающей среды.
В целом водно-солевой обмен пресноводных рыб складывается по следующей схеме (рис. 5.2): вода поступает в организм осмотическим путем через жабры и слизистую пищеварительного тракта; избыток ее выводится через почки. Активного питья не происходит. Соли поступают с пищей и через жабры; потеря их идет с мочой (хотя этот процесс ослаблен почечной реабсорбцией), экскрементами и частично через кожу.
Фильтрационно-реабсорбционная функция почек, как и абсорбционная активность жаберного эпителия, представляют собой осморегуляторные механизмы, деятельность которых может изменяться взависимости от соотношения осмотических давлений водной среды и жидкостей организма. Это открыло водным позвоночным возможность освоения различных по солености водоемов. Сформировавшись как приспособление к осморегуляции в пресной воде, этот механизм открыл первичноводным позвоночным возможность выйти в море.
3.Осморегуляция в море. Костные рыбы.
Освоение позвоночными морской среды началось в конце силура - начале девона и шло на базе свойственной их предкам клубочковой почки. Задачи осморегуляции в морской воде прямо противоположны пресноводному типу: в море осмотическое давление внутренней среды организма несколько ниже, чем морской воды, и в силу этого организм постоянно обезвоживается. В результате фильтрационная функция почек, направленная на усиленное выведение воды, у морских костных рыб ослаблена. Значительная часть клубочков вообще не участвует в фильтрации.
В опытах с форелью было показано, что, хотя фильтрационная способность отдельных нефронов в морской воде выше (3,74 нл/мин против 1,31 нл/мин в пресной воде), общая гломерулярная фильтрация за счет уменьшения числа функционирующих нефронов в морской воде ниже, чем в пресной,-соответственно 20,1 и 142,6 нл/мин.
У многих морских рыб уменьшается размер клубочков, а нередко и их число. Как крайний пример отметим существование в море видов рыб с агломерулярной (лишенной клубочков) почкой: канальцы нефронов в такой почке оканчиваются слепо, стенки их
- 59 - обладают секреторной функцией. Такая почка характерна, в частности, для рыб семейства Syngnathidae, а также встречается у ряда антарктических видов. В последнем случае утрата клубочков, по-видимому, способствует более устойчивому сохранению в крови гликопротеидов-антифризов.
Снижение уровня почечной фильтрации все же не компенсирует потери воды. Поэтому морские рыбы регулярно пьют воду, получая при этом избыточное количество солей. Экспериментально выяснено, что угорь и морской подкаменщик, находящиеся в морской воде, поглощают до 50-200 см3 воды. Если блокировать возможность ее поступления через кишечник, организм обезвоживается и после потери 2-20% исходной массы погибает. В опытах с лососем рыбы, содержавшиеся в пресной воде, не пили, а в 32-, 50- и 100%-ной морской воде поглощали соответственно 42, 95 и 129 мл воды на 1 кг массы в 1 сут.; 80% выпитой воды абсорбировалось в кишечнике.
Соответственно изменившимся задачам осморегуляции реабсорбция ионов в почечных канальцах морских костных рыб резко снижена, зато здесь происходит интенсивное обратное всасывание воды из состава первичной мочи. Морские рыбы выделяют сравнительно небольшое количество мочи (в среднем 0,13-0,96 см3 • кг-1 • ч-1), концентрация которой почти равна (лишь немного ниже) плазме крови. Интенсивно всасывается вода и в мочевом пузыре костистых рыб, стенки которого обладают высокой осмотической проницаемостью.
Избыток солей помимо почек выводится через кишечник: здесь происходит интенсивное всасывание воды, в то время как соли концентрируются и выводятся с фекалиями. Это относится главным образом к двухвалентным ионам, тогда как хлористый натрий активно абсорбируется, создавая в слизистой оболочке градиент концентрации, вследствие которого вода переносится через стенку кишечника.
Существенную роль в выведении избытка солей играют жабры. Если двухвалентные ионы в значительном количестве выводятся через почки и пищеварительный тракт, то одновалентные (главным образом Na и Cl-) экскретируются почти исключительно через жабры, выполняющие у рыб двойную функцию - дыхания и выделения. В жаберном эпителии есть особые крупные бокаловидные клетки, содержащие большое количество митохондрий и хорошо развитый эндоплазматический ретикулум. Эти “хлоридные” (или “солевые”) клетки расположены в первичных жаберных лепестках и в отличие от дыхательных клеток связаны с сосудами венозной системы. Перенос ионов через жаберный эпителий имеет характер активного транспорта и идет с затратой энергии. Стимулом экскреторной деятельности хлоридных клеток является повышение осмолярности крови.
Участие жабр в активном транспорте одновалентных ионов характерно не только для костистых рыб. Такие клетки обнаружены у миног, акуловых рыб, хрящевых и костных ганоидов. Как указывалось, активный перенос ионов свойствен и пресноводным рыбам, но происходит у них в обратном направлении. По последним данным, эти разнонаправленные функции выполняются одними и теми же клетками, в зависимости от осмотического состояния организма меняющими направленность функции активного переноса ионов.
В целом схему осморегуляции морских костистых рыб можно представить следующим образом (рис. 5.3). Гипертоничность внешней среды обусловливает постоянные осмотические потери воды (в основном через жабры), которые восполняются путем питья. Избыток получаемых при этом солей выводится через почки и с фекалиями (главным образом двухвалентные ионы), а также активно экскретируется особыми клетками жаберного эпителия (преимущественно Na и Cl-). Функционирование механизмов осморегуляции позволяет поддерживать осмотическое давление внутренней среды на относительно постоянном уровне, гипотоническом по отношению к внешней среде.
- 60 -
?t°среды
В аналогичном положении оказались и некоторые беспозвоночные, для которых обитание в морях - эволюционно вторичное явление. Как и у костистых рыб, у них осуществляется гипотоническая осморегуляция. Таковы, например, некоторые морские ракообразные, в частности Cladocera, которые первично эволюционировали как пресноводные животные.
Сохранение у большинства морских рыб клубочковой системы придает общему комплексу осморегуляторных реакций большую мобильность: в зависимости от солености окружающей среды меняется соотношение функционирующих и “резервных” нефронов, что в конечном итоге существенно расширяет круг доступных для жизни водоемов. Замечательным примером широкой приспособляемости к солевому режиму служат так называемые проходные формы некоторых круглоротых (миноги) и рыб. При миграциях из моря в реки механизм осморегуляции у них полярно преобразуется (смена гипо- и гепертонического состояния организма), что основано на пресноводном типе строения почек у всех водных позвоночных. В табл. 5.1 показано изменение параметров водно-солевого обмена у угря - рыбы, регулярно меняющей морскую среду обитания на пресноводную, и наоборот. В этой таблице ?t° означает снижение точки замерзания, зависящее от концентрации растворенных веществ; это один из способов выражения солености.
Таблица 5.1
Показатели осморегуляции у угря Anguillaanguillaв реке и море (по Н.С. Строганову, 1962)
Водоем
Выделение мочи, мл • кг-1 • сут-1
?t°мочи ?t°крови
Река 0,08 60-150 Море 1,85 2-4
0,09 0,63 0,79 0,82
У молодых лососевых рыб подготовка к смене типа осморегуляции начинается еще в реке: в процессе так называемой смолтификации увеличивается концентрация осмотически активных веществ в плазме крови, возрастает число хлоридных клеток в жабрах, активность ферментов в них и т.п. Все это повышает устойчивость к возрастающей солености при выходе в море. У идущих на нерест взрослых особей при миграции к устьям рек перестройки осморегуляции имеют обратный характер. При этом нерестовые стада рыб задерживаются в эстуарных зонах рек, характеризующихся промежуточной соленостью: здесь в течение приливно-отливного цикла происходит “внедрение” соленой воды и перемешивание ее с пресной речной. Мигрирующие рыбы некоторое время совершают возвратно-поступательные перемещения вместе с приливной волной; за это время происходит перестройка системы осморгуляции, что позволяет рыбам подняться вверх по течению к местам нерестилищ.
4.Осморегуляция в море. Хрящевые рыбы.
Приспособления к обитанию в морской среде у хрящевых рыб основаны на иных принципах. Концентрация солей в их крови сходна с таковой у костистых рыб и ниже, чем - 61 - в морской воде (табл. 5.2). Однако осмотическое давление жидкостей тела у этих рыб практически равно осмотическому давлению морской воды, слегка даже превышая его (рис. 5.4).Достигается это тем, что в почечных канальцах хрящевых рыб идет активная реабсорбция мочевины: 70-99% мочевины возвращается из первичной мочи в кровь, повышая ее суммарное осмотическое давление. Проницаемость жабр для мочевины у этих рыб в отличие от костистых понижена, и избыток мочевины выводится практически только через почки.
Таблица 5.2.
Концентрация натрия, калия и мочевины в плазме крови водных позвоночных животных, ммоль/л (по К. Шмндт-Нисльсен, 1982)
Виды
Морская вода Круглоротые Миксина Myxine Минога Petromyzon Минога Lampetra Хрящевые рыбы Скат Raja
Пресные воды 115 4 259 Море 160 5 392 Пресные воды 155 3 323 Море 177 3 371 Пресные воды 181 2 340 Море 212 3 400
Помимо мочевины в крови хрящевых рыб накапливается триметиламиноксид (ТМАО), также обладающий высокой осмотической активностью. ТМАО содержится в жидкостях тела многих морских организмов, но у пластиножаберных рыб его концентрация особенно велика. Так, если у морских костистых рыб его содержание в крови составляет 25-460 мг %, то у акуловых - 250-1430 мг %. Таким образом, сохраняя концентрацию биологически важных солей неизменной, хрящевые рыбы по суммарному осмотическому давлению внутренней среды почти не отличаются от морской воды; оно меняется соответственно изменениям внешней солености. Хрящевых рыб называют метизотонтескими животными, т.е. как бы промежуточными между гомойо- и пойкилоосмотическими формами, обладающими внешними признаками изотонии. Подобный тип осморегуляции свойствен некоторым осморегулирующим беспозвоночным животным, накапливающим в теле свободные аминокислоты.
На снижение солености среды хрящевые рыбы реагируют уменьшением реабсорбции мочевины и усилением выведения ее (и ТМАО) с мочой. Благодаря этим регуляторным процессам акуловые рыбы (по крайней мере некоторые виды) выдерживают большие колебания солености среды, появляясь даже в пресных водах. Относительно немногочисленные виды пресноводных скатов, имея клубочковую почку, осуществляют осморегуляцию, подобно пресноводным костистым рыбам. Содержание мочевины в крови у них хотя и выше, чем у костистых рыб, но все же меньше, чем у морских форм; реабсорбция мочевины в почечных канальцах практически отсутствует, жабры способны поглощать Na и Cl- из окружающей среды.
Поскольку внутренняя среда хрящевых рыб слегка гипертонична по отношению к морской воде (рис. 5.4), происходит умеренный осмотический приток воды в организм, который обеспечивает потребности мочеобразования. Поэтому в отличие от костистых рыб акуловые не пьют морскую воду и не получают с ней дополнительной солевой нагрузки. Избыток солей, полученных с пищей, выводится в составе мочи, фекалий и секрета ректальной железы.
Аналогичный хрящевым рыбам тип осморегуляции обнаружен у единственного современного вида кистеперых рыб Latimeriachalumnae, ведущего морской образ жизни (табл. 5.2). Благодаря высокому (сравнимому с акулами) содержанию в крови мочевины (355 ммоль/л) и ТМАО (более 100 ммоль/л) общая осмотическая концентрация плазмы у латимерии близка к таковой вод Индийского океана (соответственно 1181 и 1000 мосм/л). При этом концентрация электролитов составляет лишь 40% от их содержания в морской воде. Сходство с пластиножаберными дополняется наличием у латимерии ректальной железы.
Значительное количество мочевины синтезируется и задерживается в крови у двоякодышащих рыб. У осетровых рыб в морской воде также увеличивается соtrialние в сыворотке крови осмотически активных веществ, что ведет к сближению осмотического давления крови и оtrialющей среды. В отличие от хрящевых рыб у ocetrialx при изменении солености среды колеблется и содержание электролитов, в частности хлористого натрия. Создается впечатлtrial что у хрящевых ганоидов (осетровые) регtrialя водно-солевого обмена осуществляется по типу, промежуточному между осморегуляцией хрящевых и высших костных рыб.
Среди круглоротых миноги обладают вполне развитой системой осморегуляции. Им свойственна клубочковая почка и общий тип осморегуляции, сходный с костистыми
- 63 - рыбами. Миксины - типичные морские формы - характеризуются изотоничностью жидкостей тела и морской воды. У этих животных 99% осмотического давления внутренней среды определяется неорганическими ионами, концентрация которых весьма лабильна и быстро следует за изменениями солености окружающей среды (слегка превышая ее). Нередко это обстоятельство рассматривают как показатель пойкилоосмотичности миксин. Однако выяснено, что эти формы способны к активной реабсорбции Na в почечных канальцах. Искусственная осмотическая нагрузка ведет у них к активации гипоталамо-гипофизарной системы, что указывает хотя бы на потенциальную способность миксин к осморегуляции.
5.Физиологический контроль осморегуляции.
Интенсивность работы осморегуляторных механизмов стимулируется динамикой осмотического давления внутренней среды. У рыб регуляция этих процессов связана главным образом с нервно-гуморальными механизмами системы гипоталамус-гипофиз- интерреналовая ткань. (Интерреналовая ткань - гомолог коры надпочечников высших позвоночных. Состоит из железистых клеток, развивающихся из целомического эпителия боковых пластинок.)В ответ на осмотическую стимуляцию клетки гипоталамуса вырабатывают нейросекреты, которые по аксонам нейросекреторных клеток передаются в заднюю (нервную) долю гипофиза. Отсюда они попадают в кровь уже в виде гормонов с общим названием АДГ (антидиуретическийгормон), регулирующих интенсивность клубочковой фильтрации. Одновременно другие клетки гипоталамуса продуцируют нейросекреты, которые по специальным кровеносным сосудам попадают в переднюю долю гипофиза (аденогипофиз) и здесь стимулируют продукцию пролактина и адренокортикотропного гормона (АКТГ). Пролактин играет ведущую роль в пресноводной осморегуляции, а АКТГ, в свою очередь, стимулирует интерреналовую ткань, вырабатывающую специфические гормоны, регулирующие водно-солевой обмен (главным образом в морской воде).
6.Экологические варианты осморегуляции.
Активная осморегуляция обеспечивает не только приспособления принципиального характера (пресноводный и солоноводный тип осморегуляции), но и лабильные адаптивные реакции на меняющийся градиент осмотического давления организма и среды. Это в значительной степени расширяет экологические возможности животных-осморегуляторов. Адаптации этого типа проявляются у разных видов неодинаково, как правило, в соответствии с особенностями среды обитания и образа жизни.
Так, рыбы Xiphisteratropurpureus, живущие в приливно-отливной зоне, систематически подвергаются изменениям солености среды и соответственно быстро и совершенно регулируют свой водно-солевой обмен. Три вида бычков рода Cortusотличаются по особенностям биологии и способности к осморегуляции: у пресноводного С. morioскорость потери Na через жабры при повышении солености воды вдвое ниже, чем у морских С. bubalisи С. scorpius. В этих же условиях С. morion С. bubalis(обитает в опресненных участках моря) увеличивают объем выпитой воды, тогда как чисто морской С. scorpius, обитающий в местах с устойчивой соленостью, не проявляет такой реакции. Аналогичным образом популяция Cyprinodonvariegatus, живущая в открытой лагуне с резко меняющейся соленостью, оказалась более устойчивой к экспериментальным перепадам концентрации солей в воде, чем популяции того же вида, обитающие в условиях хотя и различной (16 и 29‰), но устойчивой солености.
Это же характерно и для беспозвоночных животных. Например, офиуры Ophiothrixangulataиз эстуария в Южной Каролине (США) менее устойчивы к снижению солености, чем представители того же вида из эстуария во Флориде, где наблюдаются частые и длительные периоды опреснения.
В целом сложная система осморегулирующих механизмов определяет как общую адаптацию гидробионтов к жизни в водоемах разного типа, так и приспособления к занятию разных экологических ниш в каждом варианте водной среды, в том числе и в
- 64 - условиях неустойчивой солености (эстуарии крупных рек, приливно-отливные зоны, ряд внутренних водоемов).
Тема лекции №9: Дыхание гидробионтов
Цель лекции: Рассматриваемые вопросы:
В широком смысле дыхание понимается как высвобождающее энергию биологическое окисление, причем в качестве окислителя, т. е. акцептора электронов, может использоваться молекулярный кислород (аэробное дыхание}^ или другие субстраты (анаэробное дыхание, БРОЖЕНИЕУТТТЕРВЫЙ тип дыхания имеет .наибольшее значение в энергетике водных экосистем. Заметно меньшую роль играет анаэробное дыхание. Наиболее часто оно проявляется у гидробионтов в форме «сульфатного» и «нитратного» дыхания, когда акцепторами электронов служит соответственно кислород SO42- и NO3- (сульфатредуцирующие и денитрифицирующие бактерии). При брожении энергия высвобождается в процессе дегидрирования, сопровождающем расщепление сложных органических молекул на. более простые. При таком способе добывания энергии (брожении) для гидробионтов наиболее характерен гликолиз — постепенное расцепление гексоз до двух молекул пировиноградной кислоты. В этом процессе две молекулы НАД восстанавливаются до НАД-Н, а регенерация первых осуществляется за счет восстановления пировиноградной кислоты в молочную — конечный продукт гликолитического брожения. Энергетический выход — две молекулы АТФ на одну молекулу гексозы вместо 36 при аэробном процессе.
Помимо расширительного понимания дыхания как всякого высвобождающего энергию биологического окисления есть и более узкое, распространяющееся только на процессы, связанные с поглощением кислорода. Аэробное дыхание в воде сложнее, чем на суше. У наземных животных влага на дыхательных поверхностях содержит нормальное или несколько меньшее количество растворенного кислорода. Если вода, омывающая дыхательные структуры гидробионтов, насыщена кислородом, условия их дыхания не хуже или даже лучше, чем у наземных форм. Однако гораздо чаще содержание кислорода в воде намного ниже нормального, и в этих случаях респираторная обстановка для гидробионтов крайне неблагоприятна. При этом следует учесть, что концентрация кислорода снижается в результате жизнедеятельности самих гидробионтов и не всегда достаточно быстро восстанавливается за счет тех или иных внутриводоемных процессов. Отсюда понятно образное выражение BL И. Вернадского о том, что борьба за существование в гидросфере — это борьба за кислород. Характерно, что большинство вторичноводных животных, адаптируясь к новой среде, не выработало способности к водному дыханию, сохранив исходный, более эффективный способ добывания кислорода из воздуха.
Сложность респираторных условий в воде обусловила выработку у гидробионтов ряда морфологических, физиологических и биохимических адаптаций, обеспечивающих требуемый уровень интенсивности дыхания в более или менее широком интервале концентраций растворенного кислорода. Регулируя интенсивность газообмена, т. е. уровень энерготрат, гидробионты маневренно оптимизируют свою энергетику, экономичность процессов реализации генетической программы роста и развития. В условиях крайнего дефицита кислорода гидробионты предельно снижают свою активность и некоторое время выживают благодаря использованию минимума энергии, высвобождаемой анаэробно. Небольшое число гидробионтов постоянно существует в
- 65 - отсутствие растворенного кислорода, извлекая его из химических соединений или добывая энергию другими способами.
1.Адаптации гидробионтов к газообмену
Эффективность газообмена у гидробионтов прежде всего достигается увеличением площади дыхательной поверхности, а также истончением и разрыхлением покровов, через которые диффундируют газы. Следующий круг адаптаций, обеспечивающих дыхание, связан с усилением аэрации дыхательных структур, что в основном достигается различными поведенческими актами. К третьему типу относятся адаптации к эффективному транспорту кислорода и углекислоты внутри организма. Конкретное сочетание перечисленных адаптаций определяет степень эвриоксидности гидробионтов-аэробов, возможность освоения ими участков гидросферы, неблагоприятных в респираторном отношении.
Увеличение площади и газопроницаемости дыхательных поверхностей.
Газообмен гидробионтов осуществляется либо всей поверхностью тела, либо через его отдельные участки, превращенные в специальные органы дыхания — жабры, трахеи, легкие и другие образования. Гидробионты, лишенные специальных органов дыхания, обычно имеют тело с большой удельной поверхностью. Один из самых простых способов ее увеличения заключается в уменьшении размера организмов. Небольшой размер характерен для простейших, коловраток, копепод, клещей и других организмов, не имеющих специальных органов дыхания. У мелких личинок комаров Chironomus относительная величина жабр меньше, чем у крупных личинок, удельная поверхность тела которых ниже, и на дыхательные органы ложится большая нагрузка. Икринки у рыб в озерах с пониженным содержанием кислорода часто мельче, чем у рыб в озерах с более благоприятными условиями дыхания.
Увеличение поверхности тела часто достигается его уплощением, вытягиванием, образованием различных выростов, лопастей и т. п. С этим в значительной мере связана, например, гетерофиллия (гидроморфоз) растений, когда подводные листья расчленены значительно сильнее надводных, находящихся в более благоприятных для дыхания условиях.
Степень развития дыхательных поверхностей часто тесно зависит от респираторных условий. Так, личинки поденки Baetis tricau- datus, обитающие в непроточных водоемах, имеют относительно большую поверхность жабр, чем В. bicaudatus, населяющие ручьи и реки, где кислородные условия лучше. У крабов, часто находящихся на воздухе, где кислорода больше, наблюдается редукция числа и величины жабр. У представителей рода Uca, обитающих в эстуариях и бухтах тихоокеанского побережья Северной Америки, 12 жабр вместо нормальных 18, у Hemigrapsus nudus—16. У всех этих крабов, часто оказывающихся вне воды, редуцирован и объем жабр по сравнению с тем, какой наблюдается у настоящих морских обитателей.
Иногда животные сами активно увеличивают дыхательную поверхность за счет изменения формы тела. Например, олигохеты в неблагоприятных условиях дыхания, сильно вытягиваясь в длину, утончаются, благодаря чему поверхность их тела увеличивается. У Tubifex tubifex длиной 5 мм с понижением концентрации кислорода от 5 до 3 и 1 мл/л длина тела возрастает соответственно до 10—12 и 20—21 мм, т. е. может увеличиваться в 4—5 раз. Гидры и актинии при недостатке кислорода сильно вытягивают свое тело и щупальца, иглокожие — амбулакральные ножки. Прослежено повышение газообмена у полипа Pteroides, когда он вытягивает тело. Расправляя щупальца, значительно повышают уровень газообмена актинии Melridium senile и Anthoplura elegantissima (Shick et all, 1979).
Внутриорганизменный транспорт кислорода и углекислоты. У многоклеточных гидробионтов не все клетки и ткани контактируют с внешней средой, и их потребность в кислороде должна удовлетворяться с помощью специальных систем его доставки. То же самое относится к выведению СО2. В какой-то мере перенос газов может обеспечиваться
- 66 - диффузией, усиливаемой движениями тела. Однако, как показал А. Крог (1941), наибольший диаметр организма, способного осуществлятьтребуемый уровень газообмена только за счет диффузии, не превышает 1 мм. В силу этого у многоклеточных гидробионтов газы в основном транспортируются другими средствами. Наиболее эффективное из них — перенос током различных циркулирующих в организме жидкостей, особенно если в лих содержатся специальные дыхательные пигменты.
Среди дыхательных,пшжеытов у гидробионтов наиболее распространен гемоглобин (?ЭРИТРОКРЦОРИНТ) Он свойствен всем позвоночным, многим иглокожим, ракообразным, аннелидам, эхиуридам, ¦форонидам, немертинам, некоторым моллюскам, круглым и плоским червям. У всех пресноводных беспозвоночных гемоглобин встречается только в растворенном виде, у морских часто содержится в кровяных тельцах. Основная масса беспозвоночных, имеющих гемоглобин, обитает в пресных водах; в море они реже, причем, как правило, представлены донными животными.
Значительно реже, чем гемоглобин, встречается у гидроб
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы