Характеристика моделей дисперсионного анализа с фиксированными уровнями факторов. Анализ статистических данных. Определение среднего арифметического урожайности. Рассмотрение схемы однофакторного дисперсионного анализа. Изучение метода нулевых гипотез.
Аннотация к работе
Конкретная реализация фактора (например, определенный температурный режим, выбранное оборудование или материал) называется уровнем фактора или способом обработки. Модель дисперсионного анализа с фиксированными уровнями факторов называют моделью I, модель со случайными факторами - моделью II. Основными схемами организации исходных данных с двумя и более факторами являются: - перекрестная классификация, характерная для моделей I, в которых каждый уровень одного фактора сочетается при планировании эксперимента с каждой градацией другого фактора;Если проверяемая гипотеза, называемая нулевой гипотезой, верна. поставив средние в каждой серии, мы не должны получить ш расхождения между ними; если такое расхождение обнаружено то гипотезу (3) приходится отбросить. Истинное значение урожайности для каждого из m сортов почвы неизвестно, а экспериментально наблюдаемые урожайности (3) в каждом из n экспериментов на этих сортах почвы содержат ошибки, возникающие изза тех или иных случайных причин. Будет ли одинаковой урожайность на всех сортах почвы, если предположить, что измерения (3) проводились с ‚одинаковой точностью и в одинаковых условиях? Иначе говоря, мы хотим проверить влияние одного фактора сорта почвы - на урожайность .сельскохозяйственной культуры. Обозначим через среднее арифметическое из n наблюдаемых урожайностей на почве первого сорта, через - среднее из урожайностей в почве второго сорта и т. д., так, что , , Систематические ошибки наблюдений урожайностей на разных почвах неодинаковы, то мы должны ожидать повышенного рассеивания выборочных средних.Многофакторный анализ не меняет общую логику дисперсионного анализа, а лишь несколько усложняет ее, поскольку, кроме учета влияния на зависимую переменную каждого из факторов по отдельности, следует оценивать и их совместное действие. В этом смысле процедура многофакторного дисперсионного анализа (в варианте ее компьютерного использования) несомненно более экономична, поскольку всего за один запуск решает сразу две задачи: оценивается влияние каждого из факторов и их взаимодействие /3/. Предположив, что в рассматриваемой задаче о качестве различных m партий изделия изготавливались на разных t станках и требуется выяснить, имеются ли существенные различия в качестве изделий по каждому фактору: А - партия изделий; Все данные представлены в таблице, в которой по строкам - уровни Ai фактора А, по столбцам - уровни Bj фактора В, а в соответствующих ячейках, таблицы находятся значения показателя качества изделий xijk (i=1,2,...,m; j=1,2,...,l; k=1,2,...,n). Iij - эффект, обусловленный взаимодействием двух факторов, т.е.