Анализ подхода, базирующегося на применении математической модели, описанной с помощью технических ограничений в виде системы неравенств. Способ определения оптимальных режимов резания, основанный на методе линейного математического программирования.
При низкой оригинальности работы "Оптимизация режимов резания при обработке тонкостенных цилиндрических изделий", Вы можете повысить уникальность этой работы до 80-100%
Постоянное развитие техники на современном этапе требует использования деталей, которые имеют тонкие стенки (с целью экономии материала и облегчения конструкции в целом). Сейчас их количество значительно увеличивается в общей массе деталей, подвергающихся механической обработке. Тонкостенные изделия, обеспечивая высокую прочность и плотность компоновки, находят широкое применение в самых различных отраслях промышленности. Обеспечение качества обработанной поверхности с достижением минимальной себестоимости механической обработки - важнейшая задача, решаемая при проектировании технологических процессов изготовления деталей.Одним из наиболее распространенных методов оптимизации в настоящее время является метод линейного программирования [5], позволяющий осуществлять одно-временную оптимизацию скорости резания (или связанную с ней частоту вращения шпинделя) и подачи с учетом действующих при резании ограничений по критерию максимальной производительности. Целевую функцию (ЦФ) оптимизации можно записать в виде произведения, прямо пропорционального производительности обработки: ЦФ: F ? s?v ? max или F ? s?n ? max , (1) где v - скорость резания, м/мин; В основу каждого метода положена математическая модель процесса обработки, состоящая из целевой функции и ограничений, отражающих цели оптимизации и закономерности резания металлов. Модель имеет следующие ограничения: - режущие свойства инструмента, определяемые его материалом, геометрией, рациональным периодом стойкости и условиями обработки; Ограничение на подачу, допускаемую жесткостью заготовки, определяется по формуле [4]: 184В результате проведенных исследований определена математическая модель для расчета оптимальных режимов резания с использованием в качестве метода оптимизации линейное программирование.
План
2. Основное содержание и результаты работы
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы