Принцип неопределенности Гейзенберга. Квантование и направление этой векторной величины вместе с модулем момента импульса или эквивалентно. Конструирование операторов сдвига состояний. Построение последовательности сомножителей из операторов сдвига.
Операторы момента импульса и их коммутация Вместе с модулем момента импульса , или эквивалентно , квантуется и направление этой векторной величины, но в довольно своеобразной форме, отличной от классического представления о направлении векторов. Эти формулы полезны для отыскания возможных значений квадрата момента импульса и волновых функций при решении уравнения (4.62), которое несомненно сложнее решения (4.63). Для разрешения этой задачи воспользуемся приёмом, ранее примененным нами для гармонического осциллятора (см. раздел 3.51) когда собственные значения и собственные функции оператора Гамильтона были найдены лишь на основе коммутационных соотношений, а также операторов сдвигов состояний. 4.3.5.3. В этом случае мы будем перемещаться от состояния к состоянию с одним и тем же значением , а, следовательно, и с одной и той же кинетической вращательной энергией, т.е. внутри вырожденного уровня попытаемся пересчитать дискретные состояния.
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы