Управление интеллектуальным мобильным роботом в неструктурированной среде. Математический аппарат нечетких множеств: типовые формы кривых для задания функций принадлежности, примеры: треугольная, трапецеидальная и гауссова функции принадлежности.
Значительный шаг в направлении развития теории нечетких множеств сделал профессор Калифорнийского университета Лотфи А. Заде расширил понятие множества, допустил, что характеристическая функция (функция принадлежности элемента множеству) может принимать любые значения в интервале [0, 1]. Обычное (четкое) множество А универсального множества Е, элементы которого удовлетворяют свойству Р, определяются как множество упорядоченных пар , где - характеристическая функция, принимающая значение 1, если х удовлетворяет свойству Р, и 0 - в противном случае. В связи с этим нечеткое множество А универсального множества Е определяется как множество упорядоченных пар с функцией принадлежности , принимающей значение в некотором упорядоченном множестве М (например, М=[0, 1]).В экспертных и управляющих системах механизм нечетких выводов в своей основе имеет базу знаний, формируемую специалистами предметной области в виде совокупности нечетких предикатных правил вида: П1: если х есть А1, то y есть В1, П2: если х есть А2, то y есть В2, … Отношение R можно рассматривать как нечеткое подмножество прямого произведения Х ? Y полного множества предпосылок X и заключений Y. Функции принадлежности, определенные для входных переменных, применяются к их фактическим значениям для определения степени истинности каждой предпосылки каждого правила). Вычисленное значение истинности для предпосылок каждого правила применяется к заключениям каждого правила. Нечеткие подмножества, назначенные для каждой переменной вывода (во всех правилах), объединяются вместе, чтобы сформировать одно нечеткое подмножество для каждой переменной вывода.
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы