Методика навчання диференціальних рівнянь майбутніх вчителів математики в педагогічних університетах - Дипломная работа

бесплатно 0
4.5 191
Педагогічні основи і методи навчання диференціальних рівнянь, його цілі, зміст і форми. Диференціальні рівняння як складова вивчення математики в педагогічних вищих навчальних закладах. Розробка лекцій, практичних робіт, опорних конспектів за темою.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ ТА СПОРТУ УКРАЇНИ ХАРКІВСЬКИЙ НАЦІОНАЛЬНИЙ ПЕДАГОГІЧНИЙ УНІВЕРСИТЕТ імені Г.С. СКОВОРОДИ МАГІСТЕРСЬКА РОБОТА “МЕТОДИКА НАВЧАННЯ ДИФЕРЕНЦІАЛЬНИХ РІВНЯНЬ МАЙБУТНІХ ВЧИТЕЛІВ МАТЕМАТИКИ В ПЕДАГОГІЧНИХ УНІВЕРСИТЕТАХ” Науковий керівник: Док. п. н., професор. Моторіна В.Г. Харків - 2012 ЗМІСТ ВСТУП РОЗДІЛ І. ТЕОРЕТИЧНІ ОСНОВИ МЕТОДИКИ НАВЧАННЯ ДИФЕРЕНЦІАЛЬНИХ РІВНЯНЬ В ПЕДАГОГІЧНИХ УНІВЕРСИТЕТАХ 1.1 Диференціальні рівняння як складова вивчення математики в педагогічних вищих навчальних закладах 1.2 Психолого-педагогічні основи вивчення диференціальних рівнянь 1.3 Теоретичні основи вивчення диференціальних рівнянь РОЗДІЛ ІІ. МЕТОДИКА НАВЧАННЯ ДИФЕРЕНЦІАЛЬНИХ РІВНЯНЬ В ПЕДАГОГІЧНИХ УНІВЕРСИТЕТАХ 2.1 Розробка лекцій, практичних робіт, опорних конспектів 2.2 Контроль та корекція ВИСНОВКИ ВИКОРИСТАНА ЛІТЕРАТУРА ВСТУП Сучасний етап розвитку системи освіти в Україні визначається тенденціями до інтеграції у світовій системі освіти, до збереження та зміцнення інтелектуального потенціалу країни, підвищенням рівня конкуренції інтелектуальної продукції. Досягнення цього неможливе без застосування сучасних педагогічних та інформаційних технологій, що вимагає подальших глибоких досліджень процесу навчання. Концепція базової математичної освіти в Україні визначає пріоритетність методів активного навчання і новітніх інформаційних технологій навчання [42]. Від міцності цього фундаменту залежить, як швидко і наскільки надійно молодий педагог зможе створити себе як вчителя, щоб бути бажаною персоною не тільки у школі загального профілю, але й у навчальних закладах нового типу (гімназіях, ліцеях, коледжах тощо). Значний науково-теоретичний і практичний досвід розв’язання цієї проблеми знайшов своє відображення у численних публікаціях, серед яких слід виділити роботи Ж. Адамара [2], Г.О. Атанова [6] - [8], Ю.К. Бабанського [9], Г.П. Бевза [11] - [14], М.І. Бурди [21] - [22], М.І. Жалдака [32] - [38], Г.С. Костюка [43] - [44], З.І. Слєпкань [64] - [67], М.І. Шкіля [82] - [83] та багатьох інших. Серед них особливе місце посідають книги авторів, які є професійними математиками, що активно досліджують суто математичні проблеми, зокрема, серед цих підручників та посібників є книги П.С. Александрова, Б.В. Гнєденка, М.О. Давидова, В.К Дзядика, А.М. Колмогорова, Л.Д. Кудрявцева, М.М. Лузіна, І.П. Натансона, Д.А. Райкова, Г.М. Фіхтенгольца, М.І. Шкіля та багатьох інших. Мета дослідження: Розробити методику навчання диференціальних рівнянь майбутніх вчителів математики в педагогічних університетах. Предмет дослідження: Цілі, зміст, форми, методи, засоби, контроль та корекція навчання диференціальних рівнянь. Звичайні диференціальні рівняння виникають тоді, коли невідома функція залежить лише від однієї незалежної змінної. Основи цієї науки були закладені працями Даламбера, Ейлера, Бернуллі, Лагранжа і інших учених. З одного боку, нові важливі досягнення в топології, алгебрі, функціональному аналізі, теорії функцій і інших областях математики відразу ж приводять до прогресу в теорії диференціальних рівнянь і тим самим знаходять шлях до застосувань. Лише той має право навчати і виховувати, і буде це успішно робити, хто відчуває відповідальність за свою роботу, захоплений нею, хвилюється за її результати, переконаний у правильності своїх дій і принципів, якими він керується; той, хто тактичний до інших, вміє уважно вислуховувати думку інших, враховувати її, коли вона слушна, і ненав’язливо відстоювати власну думку, коли опонент помиляється; той, хто дістає задоволення від спілкування з учнями, щиро радіючи їхнім успіхам. 1.3 Теоретичні основи вивчення диференціальних рівнянь Навчальна програма вивчення курсу «Диференціальні рівняння» для студентів фізико-математичного факультету вищих навчальних педагогічних закладів I. Знання з даного курсу будуть використовуватися при вивченні рівнянь із частинними похідними, варіаційного числення, спеціальних курсів, написання курсових, кваліфікаційних та дипломних робіт. IV. Зміст дисципліни № п/п Зміст програмного матеріалу Літе-ратура Кількість годин Кален-дарні строки Лекції Прак-тичні заня-ття Самос-тійна робота ЗМІСТОВНИЙ МОДУЛЬ І 1. Геометричний зміст диференціального рівняння першого порядку. Диференціальні рівняння першого порядку з відокремлюючими змінними. Матвеев Н.М. Методы интегрирования обыкновенных дифференциальных уравнений. 5. Филиппов А.Ф. Сборник задач по обыкновенным дифференциальным уравнениям. 12. Необхідно виділити низку загальнодидактичних вимог до лекції у вищій школі: - зміст лекції має відповідати робочій навчальній програмі, відображати найновіші досягнення науки, висвітлювати перспективи подальшого розвитку наукових пошуків; - в лекції мають реалізовуватись вимоги загальнодидактичних принципів навчання: науковості, систематичності і послідовності, свідомості, активності й самостійності, наочності, зв?язку змісту навчального матеріалу з професійною діяльністю, доступності, емоційності; - має бути забезпечена логічно доцільна структура лекції відпо

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?