Метод кусочного размножения оценок при обработке реализаций сигналов ограниченного объема - Курсовая работа

бесплатно 0
4.5 169
Обработка сигналов при решении прикладных задач в системах телекоммуникаций. Обработка реализаций сигналов ограниченного объема. Структурная схема устройства, реализующая метод кусочного размножения оценок. Временные и частотные характеристики устройства.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:




Аннотация к работе
Содержание 1. Обработка реализаций сигналов ограниченного объема 2. структурная схема устройства, реализующая метод кусочного размножения оценок 3. временные и частотные характеристики устройства, реализующего метод кусочного размножения оценок выводы Библиографический список 1. Начальные условия большинства методов обработки пересекаются и, при решении конкретной задачи, существует возможность использования нескольких различных подходов к получению оценок полезного сигнала. Несмотря на противоречивость выдвигаемых требований, в ряде последних работ В.И. Марчука, В.Я. Катковника, К.О. Егиазаряна, Я. Астола предложены новые подходы и методы ослабления шумовой составляющей, позволяющие существенно расширить начальные условия обработки и сделать более мягкими ограничения на свойства составляющих математической модели, описывающей исходную реализацию. В качестве модели обрабатываемого сигнала наиболее часто используется на практике аддитивная модель, которая определяется выражением: , (1) где - неслучайный полезный сигнал, - случайные составляющие, действующие на фоне полезного сигнала. Принятое ограничение связано с условием гладкости, заключающееся в том, что любую модель из пространства можно приблизить полиномами невысокой степени на интервале [1]. В работах Дж. Бендата и А. Пирсона, С.М. Переверткина и ряда других указывается на то, что наилучшее оценивание полезного сигнала достигается, когда исходный сигнал представлен ансамблем реализаций, а оценка полезного сигнала осуществляется путем их усреднения по сечениям. Использование ранее предложенного подхода имеет следующие недостатки [5]: - минимизация целевой функции метода наименьших квадратов при произвольной степени аппроксимирующего полинома сводится к решению системы уравнения, что приводит к значительным вычислительным затратам при больших ; - в случае, если необходимо увеличить или уменьшить степень аппроксимирующего полинома, производится полный пересчет всех ранее полученных коэффициентов и оценок.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?