Методи статистичного прогнозування. Види процесів тимчасових рядів. Аналіз поводження автокорреляційних функцій тимчасових рядів. Підхід до оцінки глибини економічного прогнозу. Залежність точності прогнозованих значень від розрахованої глибини прогнозу.
Аннотация к работе
Екстраполяція базується на наступних допущеннях: 1. розвиток явищі може бути з достатньою підставою охарактеризовано плавкою (эволюторной) траєкторією - трендом; У цей час у практичній діяльності економістами для оцінки глибини економічного прогнозу використається наступна залежність: де L - період попередження, n - кількість прогнозних значень ряду, В - наявна база прогнозу. Такий підхід для різних динамічних рядів є необґрунтованим, оскільки ніяк не враховує якісної характеристики бази прогнозування, тобто різний ступінь зашумлення, рівень коливань, ступінь взаємозвязку даних вихідного ряду (див. В [1] відомий фахівець в області стратегічного планування й прогнозування - Фатхутдінов Р.А. визначає глибину прогнозування чисто емпіричним шляхом, ґрунтуючись на сформованих поданнях і догмах, залежно від використовуваного методу прогнозування. Пропонований підхід є досить простим і в той же час дуже важливим інструментам для підвищення точності економічного прогнозу й дозволяє перебороти наступні недоліки використовуваних у цей час підходів: не облік ступеня коливань ряду навколо тренда; не облік наявності/відсутності звязку між рівнями ряду в базовому періоді; Відсутність чіткої границі, за межами якої економічний прогноз не має змісту Запропонований новий підхід до оцінки глибини економічного прогнозу синтезує кількісну і якісну характеристики вихідних значень динамічного ряду й дозволяє обґрунтовано з математичної точки зору задавати період попередження для екстраполіруємих тимчасових рядів.Розподілити загально - "сукупні" витрати центру витрат на змінні та постійні, за умови, що їх загальна сума за звітній період порівняно з планом зросла з 50 тис. грн. на 60 тис. грн., а обсяг збільшився на 10%.
Список литературы
1. Фатхутдинов Р.А. Конкурентоспособность: экономика, стратегия, управление. Серия "Высшее образование". Москва: ИНФРА-М, 2000, 312 с.
2. Четыркин Е.М. Статистические методы прогнозирования. изд. 2-е, перераб. и доп., - М.: Статистика, 1977, 199 с.
3. Бокс Дж., Дженкинс Г., Анализ временных рядов. Прогноз и управление. - М.: Мир, 1974, 608 с
4. Мирский Г.Я. Характеристики стохастической взаимосвязи и их измерения. - М.: Энергоиздат, 1982. - 320 с., ил.
5. Мирский Г.Я. Аппаратурное определение характеристик случайных процессов. Изд. 2-е переработ. и доп., М., "Энергия", 1972.