Методи статистичного прогнозування. Види процесів тимчасових рядів. Аналіз поводження автокорреляційних функцій тимчасових рядів. Підхід до оцінки глибини економічного прогнозу. Залежність точності прогнозованих значень від розрахованої глибини прогнозу.
Екстраполяція базується на наступних допущеннях: 1. розвиток явищі може бути з достатньою підставою охарактеризовано плавкою (эволюторной) траєкторією - трендом; У цей час у практичній діяльності економістами для оцінки глибини економічного прогнозу використається наступна залежність: де L - період попередження, n - кількість прогнозних значень ряду, В - наявна база прогнозу. Такий підхід для різних динамічних рядів є необґрунтованим, оскільки ніяк не враховує якісної характеристики бази прогнозування, тобто різний ступінь зашумлення, рівень коливань, ступінь взаємозвязку даних вихідного ряду (див. В [1] відомий фахівець в області стратегічного планування й прогнозування - Фатхутдінов Р.А. визначає глибину прогнозування чисто емпіричним шляхом, ґрунтуючись на сформованих поданнях і догмах, залежно від використовуваного методу прогнозування. Пропонований підхід є досить простим і в той же час дуже важливим інструментам для підвищення точності економічного прогнозу й дозволяє перебороти наступні недоліки використовуваних у цей час підходів: не облік ступеня коливань ряду навколо тренда; не облік наявності/відсутності звязку між рівнями ряду в базовому періоді; Відсутність чіткої границі, за межами якої економічний прогноз не має змісту Запропонований новий підхід до оцінки глибини економічного прогнозу синтезує кількісну і якісну характеристики вихідних значень динамічного ряду й дозволяє обґрунтовано з математичної точки зору задавати період попередження для екстраполіруємих тимчасових рядів.Розподілити загально - "сукупні" витрати центру витрат на змінні та постійні, за умови, що їх загальна сума за звітній період порівняно з планом зросла з 50 тис. грн. на 60 тис. грн., а обсяг збільшився на 10%.
Список литературы
1. Фатхутдинов Р.А. Конкурентоспособность: экономика, стратегия, управление. Серия "Высшее образование". Москва: ИНФРА-М, 2000, 312 с.
2. Четыркин Е.М. Статистические методы прогнозирования. изд. 2-е, перераб. и доп., - М.: Статистика, 1977, 199 с.
3. Бокс Дж., Дженкинс Г., Анализ временных рядов. Прогноз и управление. - М.: Мир, 1974, 608 с
4. Мирский Г.Я. Характеристики стохастической взаимосвязи и их измерения. - М.: Энергоиздат, 1982. - 320 с., ил.
5. Мирский Г.Я. Аппаратурное определение характеристик случайных процессов. Изд. 2-е переработ. и доп., М., "Энергия", 1972.