Лекарственные растения и сырье, содержащие полисахариды - Курсовая работа

бесплатно 0
4.5 104
Классификация полисахаридов, их химические и физические свойства. Правила сбора, сушки и хранения целлюлозы, гемицеллюлозы, инулина, крахмала, слизи и камеди. Описание лекарственных свойств растительного сырья с интерцеллюлярной и внутриклеточной слизью.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Гомополисахариды построены из моносахаридных единиц (мономеров) одного типа (например. крахмал, клетчатка, из животных полисахаридов - гликоген, хитин), а гетерополисахариды - из остатков различных моносахаридов и их производных (например, гемицеллюлозы, инулин, пектиновые вещества, слизи и камеди). В составе полисахаридов обнаружено свыше 20 различных видов моносахаридов и их производных, наиболее часто встречаются: из гексоз - D-глюкоза, D-галактоза, L-фруктоза, D-манноза; из пентоз - D-ксилоза, L-арабиноза и др., из дезоксисахаров - L-рамноза, D-фукоза; из продуктов восстановления D-маннозы - спирт маннит; из продуктов окисления моносахаридов - D-глюкуроновая, D-маннуроновая, D-галактуроновая, D-гулуроновая и другие кислоты. Полисахариды - аморфные вещества, не растворяются в спирте и неполярных растворителях; растворимость в воде варьирует: некоторые растворяются в воде с образованием коллоидных растворов (амилоза, слизи, пектовые кислоты, арабин), могут образовывать гели (пектины, альгиновые кислоты, агар-агар) или вообще не растворяться в воде (клетчатка, хитин). В медицине сырье, содержащее слизи, используют как противовоспалительное, отхаркивающее (виды алтея, подорожника, мать-и-мачехи), обволакивающее, слабительное (семена льна) средство. Корни и трава алтея содержат полисахариды: слизь (в корне - до 35%, в траве - до 12%), состоящую из пентозанов, гексозанов и уроновых кислот; сахара (до 8% в корне); корни, кроме того, содержат крахмал (до 37%), около 1% пектиновых веществ, жирное масло, органические кислоты, дубильные вещества, стероиды, бетаин, аспарагин, минеральные соли.В заключение своей работы хотелось бы отметить актуальность изучения этого раздела фармакогнозии, так как описанное выше лекарственное растительное сырье широко используется в народной и официальной медицине. В медицине они и модифицированные различными способами их производные могут быть использованы как наполнители, кровезаменители, обладают способностью пролонгировать действие лекарств, повышают резистентность слизистой оболочки желудка, оказывая противовоспалительное, обволакивающее и ранозаживляющее действие.

План
Содержание

Введение

Сырье, содержащее полисахариды

Классификация полисахаридов

Физические и химические свойства

Сбор, сушка, хранение сырья

Полисахариды морских водорослей

Пектиновые вещества

Сырье с интерцеллюлярной слизью

Сырье с внутриклеточной слизью

Выводы

Список используемой литературы

Введение
Двадцатый век характеризуется бурным развитием всех отраслей науки. Прочно вошли в нашу жизнь новые химические соединения, материалы, полученные путем синтеза.

Среди фармакологически активных соединений, синтезируемых растениями, своеобразную группу представляют собой полисахариды. Но в настоящее время, ввиду бурного развития рынка лекарственных препаратов, полисахаридам не уделяется должного внимания.

Именно поэтому моя курсовая работа является попыткой отобразить, насколько это возможно, всю важность и глубину исследуемой проблемы. Я попытаюсь последовательно и аргументировано изложить сущность вопроса, детально рассмотреть свойства изучаемого лекарственного растительного сырья.

Сырье, содержащее полисахариды

Полисахариды - это высокомолекулярные продукты конденсации более 5 моносахаридов и их производных, связанных друг с другом О-гликозидными связями и образующие линейные или разветвленные цепи.

Разнообразие в строении полисахаридов может быть обусловлено не только характером моносахаридов и способом их соединения, но также тем, что гидроксильные и карбоксильные группы моносахаридов и их производных могут быть метилированы, этерифицированы органическими и неорганическими кислотами (например, серной кислотой - агар-агар); водороды карбоксильных групп замещены на ионы металлов (пектиновые вещества, камеди).

Классификация полисахаридов

Полисахариды делят на два типа: гомополисахариды (гомополимеры) и гетерополисахариды (гетерополимеры), в зависимости от характера входящих в их состав моносахаридов и их производных.

Гомополисахариды построены из моносахаридных единиц (мономеров) одного типа (например. крахмал, клетчатка, из животных полисахаридов - гликоген, хитин), а гетерополисахариды - из остатков различных моносахаридов и их производных (например, гемицеллюлозы, инулин, пектиновые вещества, слизи и камеди).

Также полисахариды можно классифицировать: по кислотности: · нейтральные;

· кислые по характеру скелета: · линейные;

· разветвленные по происхождению: · фитополисахариды (крахмал, инулин, камеди, слизи, пектиновые вещества, клетчатка);

· зоополисахариды (гликоген, хитин);

· полисахариды микроорганизмов.

В зависимости от функций полисахариды делятся на: · каркасные (конструктивные) - клетчатка, хитин;

· энергетические (резервные, запасные) - крахмал, гликоген, инулин, слизи, альгиновые кислоты;

· защитные - слизи, камеди.

Молекулярная масса полисахаридов колеблется от нескольких тысяч до нескольких миллионов единиц. В составе полисахаридов обнаружено свыше 20 различных видов моносахаридов и их производных, наиболее часто встречаются: из гексоз - D-глюкоза, D-галактоза, L-фруктоза, D-манноза; из пентоз - D-ксилоза, L-арабиноза и др., из дезоксисахаров - L-рамноза, D-фукоза; из продуктов восстановления D-маннозы - спирт маннит; из продуктов окисления моносахаридов - D-глюкуроновая, D-маннуроновая, D-галактуроновая, D-гулуроновая и другие кислоты.

Все полисахариды относятся к группе О-гликозидов. Моносахариды и их производные входят в состав П. В пиранозной, реже фуранозной форме. Образование О-гликозидной связи происходит за счет полуацетального (гликозидного) гидроксила одного моносахарида и водорода гидроксильной группы другого моносахарида с образованием 1®2; 1®3; 1®4; 1®6 связей.

?-D-глюкопираноза 1,4- ?-D-глюкан

При конденсации моносахаридов могут образоваться линейные (амилоза, клетчатка - 1,4-?-D-глюкан) или разветвленные цепи (амилопектин и др.).

Разнообразие в строении полисахаридов может быть обусловлено не только характером моносахаридов и способом их соединения, но также тем, что гидроксильные и карбоксильные группы моносахаридов и их производных могут быть метилированы, этерифицированы органическими и неорганическими кислотами (например, серной кислотой - агар-агар); водороды карбоксильных групп замещены на ионы металлов (пектиновые вещества, камеди).

Физические и химические свойства

Физические свойства

Полисахариды - аморфные вещества, не растворяются в спирте и неполярных растворителях; растворимость в воде варьирует: некоторые растворяются в воде с образованием коллоидных растворов (амилоза, слизи, пектовые кислоты, арабин), могут образовывать гели (пектины, альгиновые кислоты, агар-агар) или вообще не растворяться в воде (клетчатка, хитин).

Химические свойства

Полисахариды подвергаются ферментативному и кислотному гидролизу с образованием моно- или олигосахаридов, содержащих от 2 до 4 моносахаридных единиц. Каждая из групп полисахаридов обладает своими специфическими свойствами.

Распространение в растительном мире. Биологическая роль.

В природе 80% органических веществ составляют полисахариды. Они играют различную биологическую роль для растений и животных.

Сбор, сушка, хранение сырья

Собирают сырье в период максимального содержания действующих веществ. Надземные части растений - в сухую погоду; подземные органы, содержащие слизь, обычно не моют, а иногда снимают пробку (корни алтея).

Сушка предпочтительна искусственная при температуре 50-60°С. Хранят сырье по общему списку, в сухом, прохладном (10-15°С) помещении, оберегая от амбарных вредителей.

Анализ сырья, содержащего полисахариды

Методы качественного и количественного анализа основаны на физико-химических свойствах полисахаридов и будут рассмотрены при характеристике отдельных групп полисахаридов.

Применение сырья, содержащего полисахариды в медицинской практике

Полисахариды имеют важное медицинское и народно-хозяйственное значение.

В медицине они и модифицированные различными способами их производные могут быть использованы как наполнители, кровезаменители, обладают способностью пролонгировать действие лекарств, повышают резистентность слизистой оболочки желудка, оказывая противовоспалительное, обволакивающее и ранозаживляющее действие.

Обладают иммунологической активностью. Полисахариды некоторых грибов (дождевики) показали ингибирующий эффект в отношении клеток саркомы in vitro. Из них получают лекарственные средства, применяемые как радиопротекторные, отхаркивающие, иммунозащитные, противоязвенные и др. средства. Более подробно медицинское значение полисахаридов рассмотрено при характеристике отдельных групп полисахаридов.

Целлюлоза (клетчатка) - полисахарид, составляющий основную массу клеточных стенок растений (особенно ее вторичной оболочки). Молекулярная масса ее точно не установлена. Предполагают, что молекула клетчатки у разных растений содержит от 1400 до 10000 остатков глюкозы, которые соединены между собой b-1-4-гликозидными связями в линейные цепи.

Целлюлоза подвергается кислотному гидролизу и при кипячении с концентрированной серной кислотой превращается в глюкозу. При более слабом гидролизе образуется олигосахарид целлобиоза. Наличие значительных количеств целлюлозы должно учитываться при переработке лекарственного сырья. В медицине используется вата - Gossypium (волоски семян видов рода хлопчатник Gossypium L. сем. Мальвовые Malvaceae), более чем на 95% состоящая из клетчатки.

Вата является исходным материалом для получения коллодия и различных производных целлюлозы (метилцеллюлоза и др.), находящих широкое применение в качестве вспомогательных веществ при изготовлении разных лекарственных форм.

В технике из целлюлозы производят бумагу, целлофан, сорбенты, взрывчатые вещества и др.

Гемицеллюлозы - название этой группы полисахаридов было предложено в 1891 г. Шульце (Schulze) для описания веществ, которые относительно легко экстрагировались из разных растительных тканей и которые, как он полагал, являлись предшественниками целлюлозы, - отсюда название гемицеллюлоза (геми от греч. hemi - полу). Теперь установлено, что подобной связи не существует. Гемицеллюлозы - основной компонент первичной оболочки растительных клеток. Являясь одним из компонентов пластичного матрикса, гемицеллюлозы придают клеточной стенке дополнительную прочность, но почти не препятствуют ее росту. Гемицеллюлозы могут быть и запасными веществами, так как легко гидролизуются.

Макромолекулы гемицеллюлоз разветвлены и построены из пентоз (ксилоза, арабиноза) или гексоз (манноза, галактоза, фруктоза); степень полимеризации 50-300. По доминирующему в структуре моносахариду гемицеллюлозы можно подразделить на три подгруппы: ксиланы, маннаны и галактаны.

Инулин - высокомолекулярный углевод, растворимый в воде; из водных растворов осаждается спиртом. Количество остатков фруктозы, связанных в молекуле инулина гликозидными связями между 1-м и 2-м углеродными атомами, предположительно равно 34. Макромолекулы линейны и оканчиваются a-D-глюкопиранозным остатком. При кислотном гидролизе инулина образуются фруктофураноза и небольшое количество глюкопиранозы. Инулин в больших количествах содержится в подземных органах растений семейств Asteraceae и Campanulaceae, в которых он заменяет крахмал. Растения, содержащие инулин, используются для получения D-фруктозы. В настоящее время сырье богатое инулином (корни цикория, клубни топинамбура) широко используется в составе различных пищевых добавок, применяемых при заболевании диабетом.

Инулин относится к фруктозанам. Кроме фруктозанов инулиноподобного типа. у которых фруктофуранозные остатки соединены гликозидными (b2®1)-связями, выделяют фруктозаны леваноподобного типа, у которых остатки фруктофуранозы соединены гликозидными (b2®6)-связями. Леваны - линейные или имеющие низкую степень ветвления молекулы с более короткой цепью, чем инулин. Фруктозаны леваноподобного типа обнаружены в листьях, стеблях и корнях ряда однодольных растений. Так у представителей сем. злаков - Poaceae леваны функционируют главным образом как временные запасные полисахариды.

Крахмал (Amylum) - самый распространенный резервный (запасной) полисахарид. Образуется в листьях в результате фотосинтеза (ассимиляционный крахмал), затем перемещается в другие органы (транзиторный); накапливается в значительных количествах в подземных органах, семенах (резервный, запасной) в виде зерен разнообразной формы.

Крахмал на 96,1-97,6 % состоит из двух полисахаридов: амилозы и амилопектина. Кроме того, содержит 0,2-0,7% минеральных веществ, до 0,6% жирных кислот (пальмитиновая, стеариновая и др.).

Амилоза представляет собой линейный гомополисхарид, состоящий из 200-1000 остатков D-глюкопиранозы, соединенных друг с другом ?-1,4-гликозидными связями (?-1,4- D-глюкан).

?-1,4- D-глюкан

Макромолекулы амилозы образуют спирали, каждый виток которой состоит из 6 остатков D-глюкопиранозы. Молекулярная масса колеблется от 32000 до 160000 единиц.

Амилоза растворяется в воде, образуя растворы со сравнительно невысокой вязкостью; с раствором Люголя дает синее окрашивание.

Амилопектин - разветвленный гомополисахарид, содержит 600-6000 остатков D-глюкопиранозы, связанных между собою ?-1,4- и ?-1,6-гликозидными связями.

?-1,4; 1,6 - D-глюкан

Молекулярная масса колеблется от 100000 до 1000000 единиц и более. Амилопектин растворяется в воде при нагревании, дает стойкие вязкие растворы; с реактивом Люголя дает фиолетовое окрашивание.

Содержание амилозы и амилопектина в растениях различно и зависит от вида растения и органа, из которого он получен. Это соотношение меняется в период созревания.

Крахмал - белый, аморфный порошок, плотность его более 1. В холодной воде лишь набухает, при нагревании дает вязкие коллоидные растворы, называемые крахмальным клейстером.

Под действием ферментов и кислот крахмал гидролизуется. В качестве промежуточных продуктов образуются полисахариды с меньшей молекулярной массой - декстрины. При полном гидролизе получается D-глюкоза.

(C6H10О5)n > (С6Н10О5)х> С12Н22О11> С6Н12О6 крахмал декстрины мальтоза D-глюкоза

Появление синего окрашивания с раствором Люголя объясняют образованием комплексных и адсорбционных соединений между йодом и крахмалом (так называемая реакция Сакса).

В растениях крахмал находится в виде крахмальных зерен разнообразной формы: овальной, сферической, яйцевидной и т.д. Размеры зерен колеблются от 0,002 до 0,15 мм. Из крахмалов, используемых в медицине, самые крупные крахмальные зерна у картофеля, самые мелкие - у риса. Характерная форма крахмальных зерен и различия в размерах позволяют использовать эти признаки для идентификации крахмала и растений, их содержащих.

Растительным сырьем для производства основных видов крахмала служат представители сем. злаков - Poaceae: плоды пшеницы, риса, кукурузы (содержат до 70% крахмала), но выделение их сложное изза наличия белковых и других веществ, которые также нерастворимы в воде. Наиболее просто получается картофельный крахмал. Клубни картофеля (содержат до 25% крахмала) сортируют, тщательно моют, измельчают в специальных машинах, а затем вымывают крахмал из полученной кашки на ситах. Очищают и выделяют крахмал путем осаждения либо в отстойниках, либо в центрифугах.

В медицинской практике России, кроме картофельного и рисового крахмала. Используют также пшеничный и кукурузный (маисовый).

Применяют крахмал в присыпках, мазях, пастах вместе с оксидом цинка, тальком. Внутрь используются как обволакивающее, противовоспалительное, при желудочно-кишечных заболеваниях. Широко применяется как наполнитель при таблетировании, приготовлении пилюль и др.

Раствор декстринов используют как эмульгатор. Крахмал является промышленным источником для получения глюкозы.

Слизи (Mucilagines) - гидрофильные гетерополисахариды, образующиеся обычно в неповрежденных клетках растений в результате слизистого перерождения клеточных стенок или клеточного содержимого. При этом ослизняться могут отдельные клетки (корни алтея, трава фиалки) или целые слои (семена подорожников, льна).

По химическому строению слизи делят на две группы: 1. Нейтральные слизи - являются продуктами полимеризации моносахаридов - D-галактозы, D-маннозы, L-арабинозы, D-глюкозы (галактоманнаны, глюкоманнаны, арабиногалактаны). Встречаются у растений сем. Орхидных, лилейных, бобовых.

2. Кислые слизи - кислотность их обусловлена наличием в их составе уроновых кислот (слизь семян подорожников, льна, корней алтея и др.).

Слизи - твердые аморфные вещества, хорошо растворимые в воде, не растворяются в спирте и неполярных растворителях. Осаждаются из водных растворов спиртом, солями Pb2 , Fe3 . При действии раствора гидроксида калия, натрия, аммиака образуется желтое окрашивание, а метиленовой сини - синее; тушь слизь не окрашивает. На этих физических и химических свойствах основаны методы выделения, очистки и анализа слизей.

Слизи чаще всего образуются у растений засушливых местообитаний в различных органах и тканях. Биологическая роль их довольно значительна. Они предохраняют растения от высыхания, играют роль запасных веществ, а также способствуют распространению и закреплению в почве семян растений (семена подорожников).

Слизи из сырья извлекают водой. Для их идентификации используют качественные реакции с растворами щелочей, аммиака (желтое окрашивание). Для выявления локализации слизи готовят микропрепараты в растворе туши, метиленовой сини. В растворе туши клетки со слизью будут бесцветными, а в метиленовой сини - синими.

Количественное определение проводят гравиметрическим методом, осаждая слизи из водных растворов, чаще всего, спиртом (листья подорожника, трава череды).

В медицине сырье, содержащее слизи, используют как противовоспалительное, отхаркивающее (виды алтея, подорожника, мать-и-мачехи), обволакивающее, слабительное (семена льна) средство. Кроме того, слизи обладают радиопротекторным и иммунозащитными свойствами.

Широко используются в пищевой и текстильной промышленности, при производстве клеев и красок.

Камеди (Gummi) - гетерополисахариды с обязательным участием уроновых кисло (D- глюкуроновой, D-галактуроновой). Карбоксильные группы уроновых кислот связаны с ионами Ca2 , K , Mg2 . Камеди образуются в результате перерождения клеточных стенок и содержимого клеток различных тканей - сердцевины, сердцевинных лучей, коры и др. При этом, в отличие от слизей, клетки разрушаются и камедь выступает из естественных трещин или из искусственных надрезов стволов и застывает в виде комковатых, ленточных и другой формы образований.

Химический состав камедей очень сложен. Например, в состав абрикосовой камеди входят глюкуроновая кислоты - до 16%, галактоза - до 44%, арабиноза - до 41%.

Камеди - твердые аморфные вещества различной окраски.

По отношению к воде делятся на 3 вида: 1. арабиновые, хорошо растворимые в воде (абрикосовая и аравийская камедь);

2. бассориновые, плохо растворимые в воде, но сильно в ней набухающие (трагакантовая камедь);

3. церазиновые - плохо растворимые и мало набухающие в воде (вишневая камедь). Не растворяются в спирте и неполярных растворителях.

Камеди не совместимы с минеральными кислотами, со спиртом. Считается, что камеди предохраняют растения от инфицирования патогенными микроорганизмами, заливая образовавшиеся трещины и другие повреждения. Наиболее богаты камедями растения сем. Бобовых, розоцветных, рутовых, сумаховых.

Применяются в фармации растворимые в воде камеди (абрикосовая, арабиновая) в качестве эмульгаторов при приготовлении эмульсий. Широко используются в технике.

Полисахариды морских водорослей

В медицинской практике используют полисахариды водорослей Laminaria, Annfeltia, Fucus и др.

Виды ламинарии (л.японская, л.сахаристая) содержат гетерополисахариды - альгиновые кислоты. Они состоят из остатков D-маннуроновой и L-гулуроновой кислот, связанных ?-1,4-гликозидными связями в виде линейной цепи. В водорослях они присутствуют в виде солей кальция, магния, калия и составляют до 30% сухой массы водорослей.

Фрагмент альгиновой кислоты

I - маннуроновая кислота

II - гулуроновая кислота

Соотношение этих кислот в молекулах альгиновых кислот варьирует, причем имеются участки полимера, состоящие только из остатков D-маннуроновой кислоты, участки, состоящие только из остатков L-гулуроновой кислоты и участки с чередующимися остатками этих двух уроновых кислот. Нативные альгиновые кислоты, по-видимому, состоят из нескольких фракций с различной растворимостью, отличающихся соотношением кислот.

Альгиновые кислоты являются природным ионообменником и обладают способностью селективно адсорбировать ионы тяжелых металлов и радиоизотопов.

Применение альгиновых кислот способствует предотвращению отложения радиоактивного стронция в организме человека и животных. Ионообменные свойства зависят от соотношения уроновых кислот. Большее содержание L-гулуроновой кислоты обеспечивает большую адсорбционную способность.

На основе альгиновой кислоты на мировом рынке имеется около 200 препаратов.

На основе альгината натрия разработаны препараты альгипор, альгимоор для лечения ожогов, ран; имеются препараты с гемостатическим, гастропротекторным действием; ламинарин сульфат применяется как антисклеротическое; препараты ламинарий применяются при колитах, хронических запорах (порошок, лаинарид), мочекаменной болезни.

Альгинаты могут использоваться для получения перевязочных материалов с пролонгированным действием.

> (1>3)-?-D-gal (1>4)-?-L-gal

Агар-агар

Пектиновые вещества

Пектиновые вещества (ПВ) - гетерополисахариды, главной структурной единицей которых является a-D-галактуроновая кислота (83-90%). Кроме галактуроновой кислоты в меньших количествах в составе ПВ присутствуют также D-галактоза, L-арабиноза, L-рамноза и другие нейтральные моносахариды.

ПВ открыты в 1825 году; название происходит от греч. слова pectos - свернувшийся, застывший.

?-D-галактуроновая кислота

В зависимости от строения, степени полимеризации ПВ классифицируются на ряд групп.

Пектовые кислоты - простейшие представители пектиновых веществ, являющиеся преимущественно продуктами полимеризации остатков ?-D-галактуроновой кислоты, связанных 1,4-связями в линейные цепи. Количество единиц ?-D-галактуроновой кислоты может достигать до 100. Растворимы в воде, являются основой других групп пектиновых веществ.

Пектиновые кислоты (пектины) - более высокомолекулярные соединения, содержащие 100-200 единиц ?-D-галактуроновой кислоты. Кроме того, карбонильные группы могут быть в различной степени метоксилированы.

Пектаты, пектинаты - соли пектовых и пектиновых кислот.

Пектиновые кислоты, пектаты и пектинаты растворимы в воде в присутствии сахаров, органических кислот с образованием плотных гелей.

Пектовая кислота - R = H

Пектиновая кислота - R = H и CH3

Пектат - R = Me

Пектинат - R = Me и CH3

Протопектины - высокомолекулярные полимеры метоксилированной полигалактуроновой кислоты с галактаном и арабинаном клеточной стенки, изредка прерываемой остатками рамнозы. Не растворимы в воде.

Общая схема строения пектиновых веществ

Протопектин содержится в большом количестве в незрелых плодах. При созревании плодов под влиянием протолитических ферментов происходит деполимеризация полиуронидных цепочек и протопектин переходит в более низкомолекулярные группы пектиновых веществ.

ПВ - твердые аморфные вещества, не растворимые в спирте и неполярных растворителях.

При действии на ПВ разбавленных щелочей или фермента пектазы метоксильные группы легко отщепляются и образуется метиловый спирт и пектовая кислота, которая легко осаждается из раствора Са2 . Это свойство можно использовать для количественного определения пектиновых веществ.

ПВ широко распространены в природе. В растениях присутствуют обычно в виде протопектина, составляющего большей частью межклеточное вещество, и вещество первичной стенки молодых растительных клеток. ПВ вместе с гемицеллюлозой выполняют функцию цементирующего материала, играя роль опорных элементов тканей.

Растворимые пектины присутствуют в соках растений. Пектиновые вещества предохраняют растения от высыхания, повышая засухоустойчивость и морозостойкость, влияют на прорастание семян и рост клеток.

Пектиновые вещества из растительного сырья извлекают при нагревании обычном 0,1 н раствором фосфорной или другой кислоты; экстракт концентрируют, фильтруют и ПВ осаждают спиртом.

Для их очистки используют образование пектатов, из которых пектиновые вещества освобождают действием кислот. Количественное определение проводят гравиметрическим методом (осаждение спиртом), методом потенциометрического титрования, основанного на взаимодействии пектовых кислот с гидроксидом кальция и др.

Обладают противоязвенной, противовоспалительной (сок подорожника, плантаглюцид); антитоксической (выводят тяжелые металлы!), радиозащитной активностью, иммунопротекторным действием; улучшают моторику желудочно-кишечного тракта, нормализуют обмен веществ, снижают содержание холестерина в крови.

В Японии запатентовано использование метоксилированного яблочного пектина для лечения рака кишечника.

В фармации пектины используют в качестве матрицы - носителя биологически активных веществ (антигельминтных препаратов, изониазида и др.), а также как эмульгатора, связующего материала при приготовлении эмульсий, пилюль. Присутствие пектинов необходимо учитывать при переработке лекарственного растительного сырья.

Широко используют в кондитерском производстве, хлебопечении, сыроварении, текстильной промышленности. В промышленности пектины получают из жома яблок, плодов цитрусов, свеклы, корзинок подсолнечников, кормового арбуза.

Сырье с интерцеллюлярной слизью

Лен обыкновенный Linum usitatissimum L.

Сем. Льновые Linaceae

Семена льна Semina Lini

Зрелые и высушенные семена культивируемого травянистого растения льна посевного (обыкновенного) Linum usitatissimum L., сем. Льновые - Linaceae; используют в качестве лекарственного средства и лекарственного сырья.

Лен - однолетник со стержневым корнем и тонким неветвистым или ветвистым стеблем. Листья сидячие, узколанцетные. Цветки пятичленные с небесно-голубым венчиком, собраны в цимоидное соцветие. Плод - коробочка с 10 семенами.

Широко культивируются различные сорта льна. Льны-долгунцы выращивают в нечерноземных областях России, Беларуси, на Украине и в Прибалтике, льны-кудряши и льны-межеумки - в Казахстане, в Западной Сибири, Поволжье, степных районах Украины, на Северном Кавказе и в Центральной Азии.

Рис. Лен обыкновенный

А-верхняя часть растения; Б-сырье

Химический состав. Семена содержат до 10% слизи, 30-40% жирного масла и 20-30% белка; цианогенные гликозиды (линамарин, линустатин, неолинустатин); лигнаны (секоизоларициразинол); фенолокислоты (сиреневая, кумаровая), макро- и микроэлементы.

Заготовка, первичная обработка, сушка. Проводится в фазу технической зрелости. Лен выдергивают, связывают в снопы, просушивают, затем обмолачивают. Для получения семян лен-кудряш и лен-межеумок убирают жатками или комбайнами.

Стандартизация. Качество сырья регламентирует ГФ XI.

Внешние признаки. Семена сплюснутые, яйцевидной формы, заостренные с одного конца и округлые с другого, неравнобокие, длиной до 6 мм, шириной до 3 мм. Поверхность семян гладкая, блестящая, со светло-желтым, ясно заметным семенным рубчиком.

Цвет семян от светло-желтого до темно-коричневого. Запах отсутствует. Вкус слизисто-маслянистый.

Микроскопия. При рассмотрении поперечного среза семени хорошо видны: кожура в виде темно-бурой полосы, эндосперм и зародыш. Диагностическое значение имеет строение семенной кожуры. В ней присутствуют следующие слои: 1) эпидермис, состоящий из крупных четырехугольных клеток; 2) 1-2 ряда паренхимных клеток; 3) механическая ткань, состоящая из одного ряда сильно утолщенных, одревесневших желтых клеток, пронизанных поровыми канальцами; 4) узкие тонкостенные клетки "поперечного слоя" (вытянуты поперек семени); 5) пигментный - состоит из одного ряда клеток с заметно утолщенными пористыми оболочками и темно-желтым содержимым.

В микропрепарате порошка семени льна обращают внимание на следующие диагностические признаки: наличие обрывков склеренхимной ткани с клетками поперечного слоя; клеток пигментного слоя; клеток эндосперма, алейроновых зерен и капель жирного масла.

Гистохимическая реакция. Реакция на слизи.

1-2 капли настоя семени льна (для этого взбалтывают семя льна с горячей водой) наносят на препаравальное стекло и добавляют 1-2 капли раствора туши. Слизь видна в виде комочков на синем фоне.

Микробиологическая чистота. В соответствии с ГФ XI, вып. 2, с. 187 и Изменением к ГФ XI от 28.12.95, категория 5.2.

Хранение. Хранят семена льна в мешках в сухих, хорошо вентилируемых помещениях. Срок годности 3 года.

Использование. Семена льна применяют внутрь в виде слизи как обволакивающее и мягчительное средство, наружно - для припарок. Из семян получают высыхающее льняное масло, используемое в линиментах.

Семена льна входят в состав БАДОВ.

Сырье с внутриклеточной слизью

Алтей лекарственный Althaea officinalis L.

Сем. Мальвовые Malvaceae

Корни алтея Radices Althaeae

Собранные осенью или весной, очищенные от земли и пробкового слоя и высушенные боковые и неодревесневшие стержневые корни дикорастущих и культивируемых многолетних травянистых растений алтея лекарственного Althaea officinalis L. и алтея армянского Althaea armeniaca Ten., сем. Мальвовые - Malvaceae; используют в качестве лекарственного средства и лекарственного сырья.

Рис. Алтей лекарственный

Собранные осенью или весной, тщательно отмытые и высушенные боковые и неодревесневшие стержневые корни культивируемых и дикорастущих многолетних травянистых растений алтея лекарственного и алтея армянского; используют в качестве лекарственного сырья.

Собранная в течение месяца от начала цветения и высушенная трава культивируемого многолетнего травянистого растения алтея лекарственного; используют в качестве лекарственного растительного сырья.

Таблица № . Отличие алтея лекарственного от примесей.

Признаки Алтей лекарственный Мальва лесная Хотьма тюрингинская

Строение венчика Лепестки дл. 15-20 мм, бледно-розовые, соцветия в пазухах листьев Лепестки беловатые, лепестки едва превышают чашечку Лепестки крупные 3-4 см длиной, розовые. Цветки одиночные в пазухах листьев.

Подчашие из 6-9 листочков из 4 листочков из 3 листочков

Алтей лекарственный - многолетнее травянистое растение высотой 60-150 см, с коротким ветвистым корневищем, крупным деревянистым главным корнем и многочисленными мясистыми боковыми корнями. Стебли опушенные, с очередными округло-почковидными нижними, округлыми или яйцевидными, слегка лопастными средними и цельными продолговато-яйцевидными верхними листьями, сверху слабо, снизу густо опушенными. Край листьев неравномерно городчато-зубчатый. Цветки пятичленные, с беловатым или розоватым венчиком из обратнояйцевидных лепестков и двойной чашечкой (подчашие из 9-12 листочков), скучены в пазухах верхних и средних листьев, образуя колосовидное соцветие - тирс. Тычинок много, сросшихся нитями в трубочку. Пестик один - сложный с верхней многогнездной завязью. Плод - дисковидный схизокарпий, распадающийся после созревания на почковидные темно-бурые плодики. Цветет с июня до сентября, плодоносит в сентябре-октябре.

Алтей лекарственный распространен в лесной и лесостепной зонах европейской части СНГ, в южных районах Западной Сибири, в Казахстане, Центральной Азии, на Кавказе. В Западной Сибири и Центральной Азии алтей лекарственный приурочен к степным районам, в полупустынной зоне встречается в заболоченных песчаных низинах, в горных районах - в долинах и ущельях (рис. ).

Алтей армянский отличается тем, что стебли у него чаще одиночные, с округлыми в очертании, трех- и пятираздельными (рассеченными) листьями, более длинными, чем у а. лекарственного цветоножками и кистевидными соцветиями. Алтей армянский встречается на юге-востоке европейской части России (по низовьям Дона и Волги), в Казахстане, Центральной Азии и на Кавказе.

Оба вида предпочитают достаточно увлажненные местообитания. Растут обычно небольшими группами или изреженными зарослями. Культивируют в ряде хозяйств ранее относящихся к АПК "Эфирлекраспром".

Потребность в корнях алтея предполагается в основном удовлетворять за счет возделывания растения на плантациях, в траве - полностью с культивируемых растений. Основные заготовки (на естественных зарослях) проводятся на Северном Кавказе (главным образом в Дагестане), на Украине, в центральных областях Российской Федерации.

Химический состав. Корни и трава алтея содержат полисахариды: слизь (в корне - до 35%, в траве - до 12%), состоящую из пентозанов, гексозанов и уроновых кислот; сахара (до 8% в корне); корни, кроме того, содержат крахмал (до 37%), около 1% пектиновых веществ, жирное масло, органические кислоты, дубильные вещества, стероиды, бетаин, аспарагин, минеральные соли. Трава помимо слизи содержит аскорбиновую кислоту, каротиноиды, флавоноиды, незначительное количество эфирного масла (0,02%).

Заготовка сырья, первичная обработка, сушка. Корни заготавливают осенью, после отмирания надземных частей растений (сентябрь-октябрь), или весной, до начала отрастания (апрель-начало мая). После выкапывания лопатами или плугами корни тщательно очищают от земли, обрезают корневища и мелкие корни, удаляют одревесневшую верхнюю часть главного корня; неодревесневшие корни подвяливают 2-3 дня на воздухе, затем снимают пробку. Крупные корни режут поперечно на куски длиной до 35 см, толстые - вдоль на 2-4 части.

Для получения неочищенного сырья после выкапывания и отряхивания от земли корни помещают в корзины и быстро промывают в холодной проточной воде. В остальном обработка проводится так же, как для очищенного от пробки сырья.

Траву алтея заготавливают во время цветения (в течение месяца от начала зацветания), скашивая механизированным способом, удаляют пожелтевшие листья и примесь других растений.

Корни и траву алтея сушат либо в сушилках при температуре 50-600С, либо в хорошо проветриваемых помещениях. В южных районах страны корни сушат также на солнце, укрывая их на ночь. При сушке этого сырья необходимо учитывать его гигроскопичность. Раскладывают тонким слоем, рыхло, на сетках или рамах, обтянутых тканью. После сушки из сырья удаляют примеси, заплесневевшие и изменившие окраску корни и части травы.

Стандартизация. Качество сырья регламентируется требованиями ГФ XI (корни алтея), ФС 42-812-73 (корень алтея неочищенный), ВФС 42-1696-87 (трава алтея лекарственного).

Внешние признаки. Корни алтея. Цельное сырье представляет собой очищенные от пробки корни почти цилиндрической формы или расщепленные вдоль на 2-4 части длиной 10-35 см, толщиной до 2 см, продольно-бороздчатые с отслаивающимися длинными, мягкими лубяными волокнами и темными точками - следами опавших или отрезанных мелких корней. Излом в центральной части зернисто-шероховатый, снаружи волокнистый. Цвет корня снаружи и в изломе белый, желтовато-белый, сероватый. Запах слабый, своеобразный. Вкус сладковатый с ощущением слизистости.

Измельченное сырье. Смесь кусочков корней различной формы размером от 1 до 7 мм. Цвет желтовато-белый или серовато-белый.

Порошок. Имеет белый, желтовато-белый или сероватый цвет, проходит сквозь сито с отверстиями размером 0,31 мм.

Корень алтея неочищенный. Цельное сырье представляет собой не очищенные от пробки корни почти цилиндрической формы или расщепленные вдоль на 2-4 части, ветвистые, различной длины, до 2 см толщины. Поверхность продольно-морщинистая, серовато-бурая.

Трава алтея. Сырье представляет собой неодревесневшие побеги с частично осыпавшимися цельными или измельченными, изломанными листьями, цветками, бутонами и плодами различной степени зрелости. Стебли округлые, продольно-прерывисто-бороздчатые, опушенные, длиной до 120 см, толщиной до 8 мм, серовато-зеленые. Запах слабый. Вкус слегка слизистый.

Качественные реакции. При смачивании среза или порошка корня раствором аммиака или гидроксида натрия появляется желтое окрашивание (слизь).

Микроскопия. При анатомическом исследовании корня алтея диагностическое значение имеют: вторичное строение корня с преобладанием в ксилеме тонкостенной паренхимной ткани; многочисленные со слабоутолщенными, неодревесневшими или слабо одревесневшими стенками группы волокон, расположенные прерывистыми концентрическими поясами во флоэме и более мелкими группами в ксилеме; небольшие группы сосудов и трахеид; одно-, реже двухрядные сердцевинные лучи; крупные клетки со слизью; клетки паренхимы с крахмальными зернами; мелкие друзы оксалата кальция.

При микроскопическом исследовании неочищенного корня алтея помимо указанных признаков надо отметить наличие тонкого слоя пробки (рис. ).

При исследовании порошка видны паренхимные клетки с крахмальными зернами и отдельные крахмальные зерна округлой, овальной или яйцевидной формы размером 3-27 мкм, обрывки сетчатых и лестничных сосудов, волокон, друзы оксалата кальция. Слизь обнаруживают при рассмотрении в разведенной туши.

Микродиагностика травы проводится по листьям. При анатомическом исследовании листьев диагностическое значение имеют: слабоизвилистые, иногда четко видно утолщенные клетки верхнего и сильноизвилистые клетки нижнего эпидермиса; устьица аномоцитного типа с 2-4 околоустьичными клетками; волоски двух типов (звездчатые из 1-8 толстостенных лучей, часто у основания одревесневающие, и железистые на одно- и двухклеточной ножке с многоклеточной головкой из 2-12 выделительных клеток, расположенных в несколько ярусов по 2-4 клетки в каждом); клетки эпидермиса в местах прикрепления волосков образуют розетки; многочисленные друзы оксалата кальция в мезофилле листа и вдоль жилок (рис. ).

Рис. Препарат корня алтея; поперечный срез. х 280

1-лубяные волокна, 2-клетки со слизью, 3-друза оксалата кальция, 4-крахмал, 5-сердцевинный луч, 6-камбий, 7-сосуды, 8-трахеиды, 9-пробка

Числовые показатели. Корни алтея. Цельное сырье. Влаги не более 14%; золы общей не более 8%; золы, нерастворимой в 10%-ном растворе хлористоводородной кислоты, не более 0,5%; деревянистых корней не более 3%; корней, плохо очищенных от пробки, не более 3%; органической примеси не более 0,5%, минеральной - не более 0,5%.

Измельченное сырье. Частиц, не проходящих сквозь сито с отверстиями диаметром 7 мм, не более 15%; частиц, проходящих сквозь сито с отверстиями диаметром 1 мм, не более 3%; органической примесей не более 0,5%, минеральной - не более 0,5%.

Порошок. Частиц, не проходящих сквозь сито с отверстиями размером 0,31 мм, не более 1%.

Корень алтея неочищенный. Цельное сырь

Вывод
В заключение своей работы хотелось бы отметить актуальность изучения этого раздела фармакогнозии, так как описанное выше лекарственное растительное сырье широко используется в народной и официальной медицине.

В медицине они и модифицированные различными способами их производные могут быть использованы как наполнители, кровезаменители, обладают способностью пролонгировать действие лекарств, повышают резистентность слизистой оболочки желудка, оказывая противовоспалительное, обволакивающее и ранозаживляющее действие.

Обладают иммунологической активностью. Полисахариды некоторых грибов (дождевики) показали ингибирующий эффект в отношении клеток саркомы in vitro. Из них получают лекарственные средства, применяемые как радиопротекторные, отхаркивающие, иммунозащитные, противоязвенные и др. средства

Актуальность данной темы подтверждает тот факт, что в природе 80% органических веществ составляют полисахариды. Они играют различную биологическую роль для растений и животных.

Список литературы
1. В.А. Куркин "Фармакогнозия" второе издание; Учебник для студентов фармацевтических вузов. - Самара: ООО "Офорт", ГОУВПО "САМГМУ", 2007 год.

2. Лекарственное растительное сырье. Фармакогнозия : учеб. пособие /под ред. Г.П. Яковлева, К.Ф. Блиновой. - СПБ. : СПЕЦЛИТ, 2004. - 765 с.

3. Государственная Фармакопея СССР Х издания, издательство "Медицина" Москва -1968 год.

4. Государственная Фармакопея СССР ХІ издания - выпуск 1 "Общие методы анализа" издательство "Медицина" Москва- 1987год.

5. Государственная фармакопея СССР XI издания - выпуск 2 "Общие методы анализа. Лекарственное растительное сырье" издательство "Медицина" Москва-1990 год.

6. А.Ф. Гаммерман "Курс Фармакогнозии" издание шестое, издательство "Медицина" -1967 год.

7. Д.А.Муравьева "Фармакогнозия", издательство "Медицина" Москва -1991 год., 8. Д.А. Муравьева и А.Ф. Гаммерман "Тропические и субтропические лекарственные растения", издательство "Медицина" Москва -1974 год.

9. Е.И. Курочкин "Лекарственные растения Среднего Поволжья" издание второе, издательство Куйбышевское книжное издательство -1989 год.

10. М.Д. Машковский "Лекарственные средства" - Т.1,2. М.; Новая волна, 2000 год.

11. Д.А.Муравьева, И.А. Самылина, Г.П.Яковлев, "Фармакогнозия": учебник, издательство "Медицина" Москва-2002 год.

12. Правила сбора и сушки лекарственных растений, издательство "Медицина" Москва -1985 год.

13. Энциклопедический словарь работника аптеки-1960 год.

14. А.А. Долгова, Е.Я. Ладыгина "Руководство к практическим занятиям по фармакогнозии".

15. Справочник-лечебник по народной и нетрадиционной медицине.-Тула:Ариэль, 1996.

16. Домашняя аптека.-М:Эксмо-Пресс:Лик пресс,2001.

17. Артюховский А.К., Козлов А.Т. Лекарственные растения: Учеб.пособие. - Воронеж : Воронеж. гос. лесотехн. акад. , 1999. 175с.

18. Мазнев Н.И. Лекарственные растения. Справочник. - М.: "Мартин", 1999. 479с.

19. Видаль, справочник. Лекарственные препараты в России. Издание пятое, переработанное, исправленное и дополненное. М.: Астра Фарм Сервис, 1999.

20. Замятина Н. Лекарственные растения / Н. Замятина. - М. : ABF, 1998. - 493 с.

21. Носов А.М. Лекарственные растения / А.М. Носов. - М. : ЭКСМО - Пресс, 2001. - 348 с.

22. Соколов С.Я. Фитотерапия и фармакология / С.Я. Соколов. - М. :Мед. информ. агентство, 2000. - 976 с.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?