Оценка устойчивости системы автоматического регулирования по критериям устойчивости Найквиста, Михайлова, Гурвица (Рауса-Гурвица). Составление матрицы главного определителя для определения устойчивости системы. Листинг программы и анализ результатов.
Замкнутая система является устойчивой, если годограф АФХ разомкнутой системы не охватывает точку с координатами (-1;j0) Для того чтобы система была устойчива, необходимо и достаточно, чтобы корни действительной и мнимой части знаменателя замкнутой системы чередовались. Для систем первого и второго порядка критерий Гурвица сводится просто к положительности коэффициентов . Если определитель ?n=0, то система находится на границе устойчивости.
1. Марголис, Б.И. Компьютерные методы анализа и синтеза систем автоматического регулирования в среде Matlab / Б.И.Марголис. - Учеб. Пособие для вузов. - Тверь: изд-во ТВГТУ, 2015.-92 с.
2. Бесекерский, В.А. Теория систем автоматического регулирования / В.А.Бесекерский, Е.П.Попов. - Москва: издательство “Наука”, 1975.-768 с.
Размещено на
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы