Кратчайший путь в взвешенном графе - Реферат

бесплатно 0
4.5 64
Ознакомление с задачей о кратчайшем пути — задачей поиска самого короткого пути между двумя точками (вершинами) на графе, в которой минимизируется сумма весов ребер, составляющих путь. Изучение алгоритмов определения пути: Флойда—Уоршелла, Дейкстры.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Задача о кратчайшем пути - задача поиска самого короткого пути (цепи) между двумя точками (вершинами) на графе, в которой минимизируется сумма весов ребер, составляющих путь. Граф представляет собой совокупность непустого множества вершин и ребер (наборов пар вершин). Такой путь называется путем длиной из вершины в (указывает на номер вершины пути и не имеет никакого отношения к нумерации вершин на графе). Тогда кратчайшим путем из вершины в вершину будет называться путь (где и ), который имеет минимальное значение суммы Если все ребра в графе имеют единичный вес, то задача сводится к определению наименьшего количества обходимых ребер. Если граф не содержит ребер с отрицательным весом, то для решения этой проблемы можно использовать алгоритм Дейкстры для нахождения кратчайшего пути от одной вершины до всех остальных, запустив его на каждой вершине.

Введение
Задача о кратчайшем пути - задача поиска самого короткого пути (цепи) между двумя точками (вершинами) на графе, в которой минимизируется сумма весов ребер, составляющих путь.

Кратчайшая (простая) цепь часто называется геодезической.

Задача о кратчайшем пути является одной из важнейших классических задач теории графов. Сегодня известно множество алгоритмов для ее решения.

У данной задачи существуют и другие названия: задача о минимальном пути или, в устаревшем варианте, задача о дилижансе.

Значимость данной задачи определяется ее различными практическими применениями. Например в GPS-навигаторах, где осуществляется поиск кратчайшего пути между двумя перекрестками. В качестве вершин выступают перекрестки, а дороги являются ребрами, которые лежат между ними. Сумма расстояний всех дорог между перекрестками должна быть минимальной, тогда найден самый короткий путь.

Задачей моего реферата, является нахождение оптимального из возможных, алгоритма-нахождения кратчайшего пути в взвешенном графе.

Задача поиска кратчайшего пути на графе может быть определена для неориентированного, ориентированного или смешанного графа. Далее будет рассмотрена постановка задачи в самом простом виде для неориентированного графа. Для смешанного и ориентированного графа дополнительно должны учитываться направления ребер.

Граф представляет собой совокупность непустого множества вершин и ребер (наборов пар вершин). Две вершины на графе смежны, если они соединяются общим ребром. Путь в неориентированном графе представляет собой последовательность вершин , таких что смежна с для . Такой путь называется путем длиной из вершины в ( указывает на номер вершины пути и не имеет никакого отношения к нумерации вершин на графе).

Пусть - ребро соединяющее две вершины: и . Дана весовая функция , которая отображает ребра на их веса, значения которых выражаются действительными числами, и неориентированный граф . Тогда кратчайшим путем из вершины в вершину будет называться путь (где и ), который имеет минимальное значение суммы Если все ребра в графе имеют единичный вес, то задача сводится к определению наименьшего количества обходимых ребер.

Задача о кратчайшем пути с учетом дополнительных ограничений

Задача о кратчайшем пути очень часто встречается в ситуации, когда необходимо учитывать дополнительные ограничения. Наличие их может значительно повысить сложность задачи

Примеры таких задач: 1. Кратчайший путь, проходящий через заданное множество вершин. Можно рассматривать два ограничения: кратчайший путь должен проходить через выделенное множество вершин, и кратчайший путь должен содержать как можно меньше невыделенных вершин. Первое из них хорошо известна в теории исследования операций .

2. Минимальное покрытие вершин ориентированного графа путями. Осуществляется поиск минимального по числу путей покрытия графа, а именно подмножества всех s-t путей, таких что, каждая вершина ориентированного графа принадлежит хотя бы одному такому пути.

3. Задача о требуемых путях. Требуется найти минимальное по мощности множество s-t путей такое, что для любого найдется путь , накрывающий его. - множество некоторых путей в ориентированном графе G .

4. Минимальное покрытие дуг ориентированного графа путями. Задача состоит в отыскании минимального по числу путей подмножества всех путей, такого, что каждая дуга принадлежит хотя бы одному такому пути. При этом возможно дополнительное требование о том, чтобы все пути исходили из одной вершины.

Рассмотрим ориентированно взвешенный граф и способы определения кратчайшего пути в таком графе.

Наиболее распространены три основных: 1) Алгоритм Флойда - Уоршелла

Алгоритм Флойда - Уоршелла - динамический алгоритм для нахождения кратчайших расстояний между всеми вершинами взвешенного ориентированного графа. Разработан в 1962 году Робертом Флойдом и Стивеном Уоршеллом, хотя в 1959 году Бернард Рой (Bernard Roy) опубликовал практически такой же алгоритм, но это осталось незамеченным.

Если граф не содержит ребер с отрицательным весом, то для решения этой проблемы можно использовать алгоритм Дейкстры для нахождения кратчайшего пути от одной вершины до всех остальных, запустив его на каждой вершине. Время работы такого алгоритма зависит от типа данных, который мы будем использовать для алгоритма Дейкстры, это может быть как простая очередь с приоритетом, так и бинарная или фибоначчиева Куча, соответственно время работы будет варьироваться от O(V3) до O(V*E*log(V)), где V количество вершин, а E - ребер.

2) Алгоритм Джонсона

Алгоритм Джонсона позволяет найти кратчайшие пути между всеми парами вершин взвешенного ориентированного графа. Данный алгоритм работает, если в графе содержатся ребра с положительным или отрицательным весом, но отсутствуют циклы с отрицательным весом.

3) Алгоритм Дейкстры

Алгоритм на графах, изобретенный нидерландским ученым Э. Дейкстрой в 1959 году. Находит кратчайшее расстояние от одной из вершин графа до всех остальных. Алгоритм работает только для графов безребер отрицательного веса. Алгоритм широко применяется в программировании и технологиях, например, его используют протоколы маршрутизации OSPF и IS-IS.

Формулировка задачи

Примеры

Вариант 1. Дана сеть автомобильных дорог, соединяющих города Московской области. Некоторые дороги односторонние. Найти кратчайшие пути от города Москва до каждого города области (если двигаться можно только по дорогам).

Вариант 2. Имеется некоторое количество авиарейсов между городами мира, для каждого известна стоимость. Стоимость перелета из A в B может быть не равна стоимости перелета из B в A. Найти маршрут минимальной стоимости (возможно, с пересадками) от Копенгагена до Барнаула.

Формальное определение

Дан взвешенный ориентированный граф без петель и дуг отрицательного веса . Найти кратчайшие пути от некоторой вершины графа до всех остальных вершин этого графа.

Неформальное объяснение

Каждой вершине из V сопоставим метку - минимальное известное расстояние от этой вершины до a. Алгоритм работает пошагово - на каждом шаге он «посещает» одну вершину и пытается уменьшать метки. Работа алгоритма завершается, когда все вершины посещены.

Инициализация. Метка самой вершины a полагается равной 0, метки остальных вершин - бесконечности. Это отражает то, что расстояния от a до других вершин пока неизвестны. Все вершины графа помечаются как непосещенные.

Шаг алгоритма. Если все вершины посещены, алгоритм завершается. В противном случае, из еще не посещенных вершин выбирается вершина u, имеющая минимальную метку. Мы рассматриваем всевозможные маршруты, в которых является предпоследним пунктом. Вершины, в которые ведут ребра из u, назовем соседями этой вершины. Для каждого соседа вершины u, кроме отмеченных как посещенные, рассмотрим новую длину пути, равную сумме значений текущей метки u и длины ребра, соединяющего u с этим соседом. Если полученное значение длины меньше значения метки соседа, заменим значение метки полученным значением длины. Рассмотрев всех соседей, пометим вершину u как посещенную и повторим шаг алгоритма.

Доказательство корректности

Пусть l(v) - длина кратчайшего пути из вершины a в вершину v. Докажем по индукции, что в момент посещения любой вершины z, d(z)=l(z).

База. Первой посещается вершина a. В этот момент d(a)=l(a)=0.

Шаг. Пускай мы выбрали для посещения вершину . Докажем, что в этот момент d(z)=l(z). Для начала отметим, что для любой вершины v, всегда выполняется (алгоритм не может найти путь короче, чем кратчайший из всех существующих). Пусть P - кратчайший путь из a в z, y - первая непосещенная вершина на P, x - предшествующая ей (следовательно, посещенная). Поскольку путь P кратчайший, его часть, ведущая из a через x в y, тоже кратчайшая, следовательно l(y)=l(x) w(xy). По предположению индукции, в момент посещения вершины x выполнялось d(x)=l(x), следовательно, вершина y тогда получила метку не больше чем d(x) w(xy)=l(x) w(xy)=l(y). Следовательно, d(y)=l(y). С другой стороны, поскольку сейчас мы выбрали вершину z, ее метка минимальна среди непосещенных, то есть . Комбинируя это с , имеем d(z)=l(z), что и требовалось доказать.

Поскольку алгоритм заканчивает работу, когда все вершины посещены, в этот момент d=l для всех вершин.

Сложность алгоритма кратчайший путь алгоритм дейкстра

Сложность алгоритма Дейкстры зависит от способа нахождения вершины v, а также способа хранения множества непосещенных вершин и способа обновления меток. Обозначим через n количество вершин, а через m - количество ребер в графе G.

· В простейшем случае, когда для поиска вершины с минимальным d[v] просматривается все множество вершин, а для хранения величин d используется массив, время работы алгоритма есть . Основной цикл выполняется порядка n раз, в каждом из них на нахождение минимума тратится порядка n операций. На циклы по соседям каждой посещаемой вершины тратится количество операций, пропорциональное количеству ребер m (поскольку каждое ребро встречается в этих циклах ровно дважды и требует константное число операций). Таким образом, общее время работы алгоритма , но, так как , оно составляет .

· Для разреженных графов (то есть таких, для которых m много меньше n?) непосещенные вершины можно хранить в двоичной куче, а в качестве ключа использовать значения d[i], тогда время удаления вершины из станет , при том, что время модификации возрастет до . Так как цикл выполняется порядка n раз, а количество релаксаций (смен меток) не больше m, скорость работы такой реализации .

· Если для хранения непосещенных вершин использовать фибоначчиеву кучу, для которой удаление происходит в среднем за , а уменьшение значения в среднем за , то время работы алгоритма составит . Альтернативами им служат толстые кучи, тонкие кучи и кучи Бродала, обладающие теми же асимптотическими оценками, но меньшими константами.

Описание

В простейшей реализации для хранения чисел d[i] можно использовать массив чисел, а для хранения принадлежности элемента множеству U - массив булевых переменных.

В начале алгоритма расстояние для начальной вершины полагается равным нулю, а все остальные расстояния заполняются большим положительным числом (большим максимального возможного пути в графе). Массив флагов заполняется нулями. Затем запускается основной цикл.

На каждом шаге цикла мы ищем вершину с минимальным расстоянием и флагом равным нулю. Затем мы устанавливаем в ней флаг в 1 и проверяем все соседние с ней вершины . Если в них (в ) расстояние больше, чем сумма расстояния до текущей вершины и длины ребра, то уменьшаем его. Цикл завершается, когда флаги всех вершин становятся равны 1, либо когда у всех вершин c флагом 0 . Последний случай возможен тогда и только тогда, когда граф G не связан

Пример

Рассмотрим выполнение алгоритма на примере графа, показанного на рисунке. Пусть требуется найти кратчайшие расстояния от 1-й вершины до всех остальных.

Кружками обозначены вершины, линиями - пути между ними (ребра графа). В кружках обозначены номера вершин, над ребрами обозначена их «цена» - длина пути. Рядом с каждой вершиной красным обозначена метка - длина кратчайшего пути в эту вершину из вершины 1.

Первый шаг. Рассмотрим шаг алгоритма Дейкстры для нашего примера. Минимальную метку имеет вершина 1. Ее соседями являются вершины 2, 3 и 6.

Первый по очереди сосед вершины 1 - вершина 2, потому что длина пути до нее минимальна. Длина пути в нее через вершину 1 равна сумме кратчайшего расстояния до вершины 1, значению ее метки, и длины ребра, идущего из 1-й в 2-ю, то есть 0 7 = 7. Это меньше текущей метки вершины 2, бесконечности, поэтому новая метка 2-й вершины равна 7.

Аналогичную операцию проделываем с двумя другими соседями 1-й вершины - 3-й и 6-й.

Все соседи вершины 1 проверены. Текущее минимальное расстояние до вершины 1 считается окончательным и пересмотру не подлежит (то, что это действительно так, впервые доказал Э. Дейкстра ). Вычеркнем ее из графа, чтобы отметить, что эта вершина посещена.

Второй шаг. Шаг алгоритма повторяется. Снова находим «ближайшую» из непосещенных вершин. Это вершина 2 с меткой 7.

Снова пытаемся уменьшить метки соседей выбранной вершины, пытаясь пройти в них через 2-ю вершину. Соседями вершины 2 являются вершины 1, 3 и 4.

Первый (по порядку) сосед вершины 2 - вершина 1. Но она уже посещена, поэтому с 1-й вершиной ничего не делаем.

Следующий сосед вершины 2 - вершина 3, так как имеет минимальную метку из вершин, отмеченных как не посещенные. Если идти в нее через 2, то длина такого пути будет равна 17 (7 10 = 17). Но текущая метка третьей вершины равна 9, а это меньше 17, поэтому метка не меняется.

Еще один сосед вершины 2 - вершина 4. Если идти в нее через 2-ю, то длина такого пути будет равна сумме кратчайшего расстояния до 2-й вершины и расстояния между вершинами 2 и 4, то есть 22 (7 15 = 22). Поскольку 22< , устанавливаем метку вершины 4 равной 22.

Все соседи вершины 2 просмотрены, замораживаем расстояние до нее и помечаем ее как посещенную.

Третий шаг. Повторяем шаг алгоритма, выбрав вершину 3. После ее «обработки» получим такие результаты:

Дальнейшие шаги. Повторяем шаг алгоритма для оставшихся вершин. Это будут вершины 6, 4 и 5, соответственно порядку.

Завершение выполнения алгоритма. Алгоритм заканчивает работу, когда нельзя больше обработать ни одной вершины. В данном примере все вершины зачеркнуты, однако ошибочно полагать, что так будет в любом примере - некоторые вершины могут остаться не зачеркнутыми, если до них нельзя добраться. Результат работы алгоритма виден на последнем рисунке: кратчайший путь от вершины 1 до 2-й составляет 7, до 3-й - 9, до 4-й - 20, до 5-й - 20, до 6-й - 11.

Алгоритм

Обозначения

· - множество вершин графа

· - множество ребер графа

· - вес (длина) ребра

· - вершина, расстояния от которой ищутся

· - множество посещенных вершин

· - по окончании работы алгоритма равно длине кратчайшего пути из до вершины

· - по окончании работы алгоритма содержит кратчайший путь из в

Псевдокод

Присвоим

Для всех отличных от присвоим

Пока Пусть - вершина с минимальным занесем в

Для всех таких, что если то изменим изменим

Размещено на .ru

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?