Наряду с металлами и сплавами в промышленности широко применяются неметаллические конструкционные материалы (пластмасса, резина, керамика, стекло, клей, лакокрасочные покрытия, древесина, ткань и т.д.). Область применения неметаллических материалов расширяется все больше и больше. В связи с чем термин «коррозия» стал применяться и по отношению к этим материалам, например «коррозия бетонов и железобетонов», «коррозия пластмасс и резин». Область применения неметаллических материалов расширяется все больше и больше, так как помимо требований высокой химической стойкости, теплопроводности и механической прочности, неметаллические материалы должны удовлетворять и многим другим требованиям (непроницаемость для газов и жидкостей, хорошая сцепляемость футеровочных материалов и покрытий с различными материалами, хорошая обрабатываемость, небольшой вес и т.д.) Нередко приходится сочетать два или даже три неметаллических материала, чтобы удовлетворить всем предъявляемым требованиям и получить необходимый эффект.К этим факторам относятся: химический и минералогический состав, пористость (открытые и закрытые поры), тип структуры (аморфная, мелкокристаллическая, крупнокристаллическая), характер агрессивной среды и ее концентрация, температура, давление, перемешивание среды и др. Так, например, сложные алюмосиликаты обладают повышенной кислотостойкостью вследствие высокого содержания в них кремнезема, нерастворимого во всех кислотах, за исключением плавиковой. Так, например, почти абсолютной кислотостойкостью обладают кварциты, изделия из плавленого кварца, содержащие почти 100% SIO2 . Материалы, содержащие основные окислы, не являются кислотостойкими и разрушаются при действии минеральных кислот, но обладают стойкостью в щелочах, как, например, известняки или магнезиты и обычные строительные цементы. Так, например, некоторые песчаники, содержащие большие количества кварца и сцементированные аморфным кремнеземом, обладают большей кислотостойкостью, чем песчаники, сцементированные известью или другими карбонатными минералами.Неметаллические материалы в качестве конструкционных материалов служат важным дополнением к металлам, в ряде случаев с успехом заменяют их, а иногда неметаллические материалы сами являются незаменимыми.
План
Содержание
Введение
1. Химическая стойкость материалов неорганического происхождения
2. Химическая стойкость материалов органического
3. Происхождения
Заключение
Используемая литература
Введение
неорганический органический коррозия неметалл
Наряду с металлами и сплавами в промышленности широко применяются неметаллические конструкционные материалы (пластмасса, резина, керамика, стекло, клей, лакокрасочные покрытия, древесина, ткань и т.д.). Область применения неметаллических материалов расширяется все больше и больше. По мере ужесточения условий эксплуатации (повышение температуры, механических напряжений, агрессивности среды и др.) и неметаллические материалы подвержены действию среды. В связи с чем термин «коррозия» стал применяться и по отношению к этим материалам, например «коррозия бетонов и железобетонов», «коррозия пластмасс и резин». При этом имеется в виду их разрушение и потеря эксплуатационных свойств в результате химического или физико-химического взаимодействия с окружающей средой. Все это требует знания свойств неметаллических коррозионно-стойких материалов и техники использования их при организации противокоррозионной защиты.
Область применения неметаллических материалов расширяется все больше и больше, так как помимо требований высокой химической стойкости, теплопроводности и механической прочности, неметаллические материалы должны удовлетворять и многим другим требованиям (непроницаемость для газов и жидкостей, хорошая сцепляемость футеровочных материалов и покрытий с различными материалами, хорошая обрабатываемость, небольшой вес и т.д.) Нередко приходится сочетать два или даже три неметаллических материала, чтобы удовлетворить всем предъявляемым требованиям и получить необходимый эффект.
Неметаллические материалы обладают многообразием свойств: широким диапазоном величин по теплопроводности, невысокой плотностью, хорошей адгезией с металлами, стойкостью в агрессивных средах. Но большинство неметаллических материалов, особенно органического происхождения, устойчивы только до температуры 150 - 200 °С, не выдерживают резких перепадов температур, плохо поддаются механической обработке.
В зависимости от их природы, неметаллические материалы подразделяются на две группы: 1. материалы неорганического происхождения (горные породы, силикатные материалы, керамика);
2. материалы органического происхождения (полимерные материалы, материалы на основе каучука, графит и его производные и т.д.).
Вывод
Неметаллические материалы в качестве конструкционных материалов служат важным дополнением к металлам, в ряде случаев с успехом заменяют их, а иногда неметаллические материалы сами являются незаменимыми. Достоинством неметаллических материалов является сочетание требуемого уровня химических, физических и механических свойств с низкой стоимостью и высокой технологичностью при изготовлении изделий сложной конфигурации. Трудоемкость при изготовлении изделий из неметаллических материалов в 5-6 раз ниже, и они в 4-5 раз дешевле по сравнению с металлическими. В связи с этим непрерывно возрастает использование неметаллических материалов в машиностроении, автомобилестроении, авиационной, пищевой, холодильной и криогенной технике и др.
Список литературы
1. Семенова И.В., Флорианович Г.М., Хорошилов А.В. Коррозия и защита от коррозии. М: ФИЗМАТЛИТ, 2006 год.
2. Солнцев Ю.П., Пряхин Е.И. Материаловедение: учебник для вузов. СПБ.: ХИМИЗДАТ, 2004 год.
3. Воробьева Г.Я. Коррозионная стойкость материалов в агрессивных средах химических производств. М: Изд-во «Химия», 1967 год.
4. Клинов И.Я. Коррозия химической аппаратуры и коррозионностойкие материалы. М: Изд-во «Машиностроение», 1967 год.
Размещено на
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы