Понятие корреляционных связей, их классификация. Корреляционные поля и цель их построения. Коэффициенты корреляции, их виды, свойства и проверка значимости. Расчет факторным экспериментом влияние давления, жирности и кислотности на качество продукции.
Планирование эксперимента - математико-статистическая дисциплина, изучающая методы рациональной организации экспериментальных исследований - от оптимального выбора исследуемых факторов и определения собственно плана эксперимента в соответствии с его целью до методов анализа результатов. Начало планирования эксперимента положили труды английского статистика Р.Фишера (1935), подчеркнувшего, что рациональное планирование эксперимента дает не менее существенный выигрыш в точности оценок, чем оптимальная обработка результатов измерений. В 60-х годах 20 века сложилась современная теория планирования эксперимента. Это целенаправленное управление экспериментом, реализуемое в условиях неполного знания механизма изучаемого явления. Цель планирования эксперимента - нахождение таких условий и правил проведения опытов при которых удается получить надежную и достоверную информацию об объекте с наименьшей затратой труда, а также представить эту информацию в компактной и удобной форме с количественной оценкой точности.Такого рода зависимость между переменными величинами называется корреляционной, или корреляцией. Корреляционная связь - это согласованное изменение двух признаков, отражающее тот факт, что изменчивость одного признака находится в соответствии с изменчивостью другого. Корреляционные связи не могут рассматриваться как свидетельство причинно-следственной зависимости, они свидетельствуют лишь о том, что изменениям одного признака, как правило, сопутствуют определенные изменения другого. Корреляционная зависимость - это изменения, которые вносят значения одного признака в вероятность появления разных значений другого признака. Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.В зависимости от коэффициента корреляции различают следующие корреляционные связи: - сильная, или тесная при коэффициенте корреляции r>0,70;Корреляция изучается на основании экспериментальных данных, представляющих собой измеренные значения (xi, yi) двух признаков. Если экспериментальных данных немного, то двумерное эмпирическое распределение представляется в виде двойного ряда значений xi и yi. Когда исследуется корреляция между количественными признаками, значения которых можно точно измерить в единицах метрических шкал (метры, секунды, килограммы и т.д.), то очень часто принимается модель двумерной нормально распределенной генеральной совокупности. Данная модель двумерного нормального распределения (корреляционное поле) позволяет дать наглядную графическую интерпретацию коэффициента корреляции, т.к. распределение в совокупности зависит от пяти параметров: ?x, ?y - средние значения (математические ожидания); ?x,?y - стандартные отклонения случайных величин Х и Y и р - коэффициент корреляции, который является мерой связи между случайными величинами Х и Y. В этом случае между случайными величинами Х и Y отсутствует корреляция и они называются некоррелированными.Практическая реализация корреляционного анализа включает следующие этапы: а) постановка задачи и выбор признаков; б) сбор информации и ее первичная обработка (группировки, исключение аномальных наблюдений, проверка нормальности одномерного распределения);Коэффициент корреляции - показатель степени взаимозависимости, статистической связи двух переменных; изменяется в пределах от-1 до 1. Значение коэффициента корреляции 0 указывает на возможное отсутствие зависимости, значение 1 свидетельствует о согласованности переменных. ранговой корреляции Спирмена (Spearmen"s rank-order correlation) - коэффициент корреляции для переменных, измеренных в порядковых (ранговых) шкалах; точечно-бисериальной корреляции (point-biserial correlation) - коэффициент корреляции, применяемый в случае анализа отношения переменных, одна из которых измерена в континуальной шкале, а другая - в строго дихотомической шкале наименований;В качестве оценки генерального коэффициента корреляции р используется коэффициент корреляции r Браве-Пирсона. Следует отметить, что если по отдельности одномерные эмпирические распределения значений xi и yi согласуются с нормальным распределением, то из этого еще не следует, что двумерное распределение будет нормальным. Строго говоря, для вычисления коэффициента корреляции достаточно только принять предположение о линейности связи между случайными величинами, и вычисленный коэффициент корреляции будет мерой этой линейной связи. Коэффициент корреляции Браве-Пирсона () относится к параметрическим коэффициентам и для практических расчетов вычисляется по формуле: Из формулы видно, что для вычисления необходимо найти средние значения признаков Х и Y, а также отклонения каждого статистического данного от его среднего . Затем, вычислив значение , необходимо определить достоверность найденного коэффициента корреляции, сравнив его фактическое значение с табличным для f =