Концепции современного естествознания - Статья

бесплатно 0
4.5 72
История открытия пульсаров. Сущность и отличительные черты цефеидов. Рекорд пульсара Крабовидной туманности. Понятие рентгеновских пульсаров как тесных двойных систем, в которых одна из звезд является нейтронной, а другая яркой звездой-гигантом.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Но до пульсаров никогда еще не встречались звезды со столь коротким периодом, как у первого «кембриджского» пульсара. Из неравенства для ускорений: следует неравенство для средней плотности звезды: Столь компактными, сжатыми до такой высокой степени могут быть лишь нейтронные звезды: их плотность действительно близка к ядерной. В системе имеется еще один период - нейтронная звезда и ее компаньон совершают обращение вокруг их общего центра тяжести с периодом 1,7 дня. Орбитальный период был определен в этом случае благодаря тому (случайному) обстоятельству, что «обычная» звезда при своем орбитальном движении регулярно оказывается на луче зрения, соединяющем нас и нейтронную звезду, и потому она заслоняет на время рентгеновский источник. Но как и в барстерах, в этих системах возможно перетекание вещества от обычной звезды к нейтронной звезде, и их излучение тоже возникает благодаря нагреву поверхности нейтронной звезды потоком аккрецируемого вещества.

Введение
На протяжении веков единственным источником сведений о звездах и Вселенной был для астрономов видимый свет. Наблюдая невооруженным глазом или с помощью телескопов, они использовали только очень небольшой интервал волн из всего многообразия электромагнитного излучения, испускаемого небесными телами. Астрономия преобразилась с середины нашего века, когда прогресс физики и техники предоставил ей новые приборы и инструменты, позволяющие вести наблюдения в самом широком диапазоне волн - от метровых радиоволн до гамма-лучей, где длины волн составляют миллиардные доли миллиметра. Это вызвало нарастающий поток астрономических данных. Фактически все крупнейшие открытия последних лет - результат современного развития новейших областей астрономии, которая стала сейчас всеволновой. Еще с начала 30-х годов, как только возникли теоретические представления о нейтронных звездах, ожидалось, что они должны проявить себя как космические источники рентгеновского излучения. Эти ожидания оправдались через 40 лет, когда были обнаружены барстеры и удалось доказать, что их излучение рождается на поверхности горячих нейтронных звезд. Но первыми открытыми нейтронными звездами оказались все же не барстеры, а пульсары, проявившие себя совершенно неожиданно как источники коротких импульсов радиоизлучения, следующих друг за другом с поразительно строгой периодичностью.

1. Открытие

Новый радиотелескоп позволял производить наблюдения больших участков неба, а аппаратура для обработки сигналов была способна регистрировать уровень радио-потока через каждые несколько десятых долей секунды. Эти две особенности их инструмента и позволили кембриджским радиоастрономам во главе с Энтони Хьюишем открыть нечто совершенно новое - пульсары. Первые отчетливо различимые серии периодических импульсов были замечены 28 ноября 1967 года аспиранткой кембриджской группы Дж. Белл. Импульсы следовали один за другим с четко выдерживаемым периодом в 1,34 секунды. Это было совершенно не похоже на обычную хаотическую картину случайных нерегулярных мерцаний. Принимаемые сигналы напоминали скорее помеху земного происхождения. Например, системы зажигания в проезжающих мимо автомобилях. Но это и другие простые объяснения вскоре пришлось оставить. Были исключены и сигналы самолетов или космических аппаратов. Затем, когда появились основания полагать, что импульсы имеют космическое происхождение, возникло предположение о внеземной цивилизации, посылающей на Землю свои сигналы. Предпринимались серьезные попытки распознать какой-либо код в принимаемых импульсах. Это оказалось невозможным, хотя, как рассказывают, к делу были привлечены самые квалифицированные специалисты. К тому же вскоре обнаружили еще три подобных пульсирующих радиоисточника. Становилось очевидным, что источники излучения являются естественными небесными телами. Первая публикация кембриджской группы появилась в феврале 1968 году, и уже в ней в качестве вероятных кандидатов на роль источников пульсирующего излучения упоминаются нейтронные звезды. Периодичность радиосигнала связывается с быстрым вращением нейтронной звезды. Источник вращается как фонарь маяка, и это создает прерывистость видимого излучения, приходящего к нам отдельными импульсами. Открытие пульсаров отмечено Нобелевской премией по физике в 1978.

2. Интерпретация: нейтронные звезды

В астрономии известно немало звезд, блеск которых непрерывно меняется, то возрастая, то падая. Имеются звезды, их называют цефеидами (по первой из них, обнаруженной в созвездии Цефея), со строго периодическими вариациями блеска. Усиление и ослабление яркости происходит у разных звезд этого класса с периодами от нескольких дней до года. Но до пульсаров никогда еще не встречались звезды со столь коротким периодом, как у первого «кембриджского» пульсара. Вслед за ним в очень короткое время было открыто несколько десятков пульсаров, и периоды некоторых из них были еще короче. Так, период пульсара, обнаруженного в 1968 году в центре Крабовидной туманности, составлял 0,033 секунды. Сейчас известно около четырех сотен пульсаров. Подавляющее их большинство-до 90%- имеет периоды в пределах от 0,3 до 3 с, так что типичным периодом пульсаров можно считать период в 1 с. Но особенно интересны пульсары-рекордсмены, период которых меньше типичного. Рекорд пульсара Крабовидной туманности продержался почти полтора десятилетия. В конце 1982 года в созвездии Лисички был обнаружен пульсар с периодом 0,0015 с, то есть 1,55 м/с. Вращение с таким поразительно коротким периодом означает 642 об/с. Очень короткие периоды пульсаров послужили первым и самым веским аргументом в пользу интерпретации этих объектов как вращающихся нейтронных звезд. Звезда со столь быстрым вращением должна быть исключительно плотной. Действительно, само ее существование возможно лишь при условии, что центробежные силы, связанные с вращением, меньше сил тяготения, связывающих вещество звезды. Центробежные силы не могут разорвать звезду, если центробежное ускорение на экваторе меньше ускорения силы тяжести

Здесь M, R - масса и радиус звезды, Q - угловая частота ее вращения, G - гравитационная постоянная. Из неравенства для ускорений: следует неравенство для средней плотности звезды: Столь компактными, сжатыми до такой высокой степени могут быть лишь нейтронные звезды: их плотность действительно близка к ядерной. Этот вывод подтверждается всей пятнадцатилетней историей изучения пульсаров.

3. Рентгеновские пульсары пульсар цефеид рентгеновский

Рентгеновские пульсары - это тесные двойные системы, в которых одна из звезд является нейтронной, а другая - яркой звездой-гигантом. Известно около двух десятков этих объектов. Первые два рентгеновских пульсара - в созвездии Геркулеса и в созвездий Центавра - открыты в 1972 г. с помощью американского исследовательского спутница «Ухуру». Пульсар в Геркулесе посылает импульсы с периодом 1,24 с. Это период вращения нейтронной звезды. В системе имеется еще один период - нейтронная звезда и ее компаньон совершают обращение вокруг их общего центра тяжести с периодом 1,7 дня. Орбитальный период был определен в этом случае благодаря тому (случайному) обстоятельству, что «обычная» звезда при своем орбитальном движении регулярно оказывается на луче зрения, соединяющем нас и нейтронную звезду, и потому она заслоняет на время рентгеновский источник. Это возможно, очевидно, тогда, когда плоскость звездных орбит составляет лишь небольшой угол с лучом зрения. Рентгеновское излучение прекращается приблизительно на 6 часов, потом снова появляется, и так каждые 1,7 дня.

Длительные наблюдения позволили установить еще один - третий - период рентгеновского пульсара в Геркулесе: этот период составляет 35 дней, из которых 2 дня источник светит, а 24 дня нет. Причина этого явления остается пока неизвестной. Пульсар в созвездии Центавра имеет период пульсаций 4,8 с . Период орбитального движения составляет 2,087 дня-он тоже найден по рентгеновским затмениям. Долгопериодических изменений, подобных 35-дневному периоду пульсара в созвездии Геркулеса у этого пульсара не находят. Компаньоном нейтронной звезды в двойной системе этого пульсара является яркая видимая звезда-гигант с массой 10-20 Солнц. В большинстве случаев компаньоном нейтронной звезды в рентгеновских пульсарах является яркая голубая звезда-гигант. Этим они отличаются от барстеров, которые содержат слабые звезды-карлики. Но как и в барстерах, в этих системах возможно перетекание вещества от обычной звезды к нейтронной звезде, и их излучение тоже возникает благодаря нагреву поверхности нейтронной звезды потоком аккрецируемого вещества. Это тот же физический механизм излучения, что и в случае фонового (не вспышечного) излучения барстера. У некоторых из рентгеновских пульсаров вещество перетекает к нейтронной звезде в виде струи (как в барстерах). В большинстве же случаев звезда-гигант теряет вещество в виде звездного ветра, исходящего от ее поверхности во все стороны потока плазмы, ионизированного газа. Часть плазмы звездного ветра попадает в окрестности нейтронной звезды, в зону преобладания ее тяготения, где и захватывается ею. Однако при приближении к поверхности нейтронной звезды заряженные частицы плазмы начинают испытывать воздействие еще одного силового поля -магнитного поля нейтронной звезды-пульсара. Магнитное поле способно перестроить аккреционный поток, сделать его несферически-симметричным, а направленным. Как мы сейчас увидим, изза этого и возникает эффект пульсаций излучения, эффект маяка. По своей структуре, т. е. по геометрии силовых линий, магнитное поле пульсара похоже, как можно ожидать, на магнитное поле Земли или Солнца: у него имеются два полюса, из которых в разные стороны расходятся силовые линии. Такое поле называют дипольным. Вещество, аккрецируемое нейтронной звездой - это звездный ветер, оно ионизовано, и поэтому взаимодействует при своем движении с ее магнитным полем. Известно, что движение заряженных частиц поперек силовых линий поля затруднено, а движение вдоль силовых линий происходит беспрепятственно. По этой причине аккрецируемое вещество движется вблизи нейтронной звезды практически по силовым линиям ее магнитного поля. Магнитное поле нейтронной звезды как бы создает воронки ее магнитных полюсов, и в них направляется аккреционный поток. На такую возможность указали еще в 1970 г. советские астрофизики Г. С. Бисноватый-Коганта. А. М. Фридман. Благодаря этому нагрев поверхности нейтронной звезды оказывается неравномерным: у полюсов температура значительно выше, чем на всей остальной поверхности. Горячие пятна у полюсов имеют, согласно расчетам, площадь около одного квадратного километра; они и создают главным образом излучение звезды - ведь светимость очень чувствительна к температуре - она пропорциональна температуре в четвертой степени. Как и у Земли, магнитная ось нейтронной звезды наклонена к ее оси вращения. Изза этого возникает эффект маяка: яркое пятно то видно, то не видно наблюдателю. Излучение быстро вращающейся нейтронной звезды представляется наблюдателю прерывистым, пульсирующим. Этот эффект был предсказан теоретически советским астрофизиком В. Ф. Шварцманом за несколько лет до открытия рентгеновских пульсаров. На самом деле излучение горячего пятна происходит, конечно, непрерывно, но оно не равномерно по направлениям, не изотропно, и рентгеновские лучи от него не направлены все время на нас, их пучок вращается в пространстве вокруг оси вращения нейтронной звезды, пробегая по Земле один раз за период. От рентгеновских пульсаров никогда не наблюдали вспышек, подобных вспышкам барстеров. С другой стороны, от барстеров никогда не наблюдали регулярных пульсаций. Почему же барстеры не пульсируют, а пульсары не вспыхивают? Все дело, вероятно, в том, что магнитное поле нейтронных звезд в барстерах заметно слабее, чем в пульсарах, и потому оно не влияет сколько-нибудь заметно на динамику аккреции, допуская более или менее равномерный прогрев всей поверхности нейтронной звезды. Ее вращение, которое может быть столь же быстрым, как и у пульсаров, не сказывается на рентгеновском потоке так как этот поток изотропен. С другой стороны, предполагают, что поле магнитной индукцией способно как то влиять - хотя, правда, и не вполне ясно пока, как именно, подавлять термоядерные взрывы в приполярных зонах нейтронных звезд. Различие в магнитном поле связано, вероятно, с различием возраста барстеров и пульсаров. О возрасте двойной системы можно судить по обычной звезде-компаньону. Нейтронные звезды в рентгеновских пульсарах имеют компаньонами яркие звезды-гиганты; в барстерах же компаньонами нейтронных звезд являются слабые по блеску звезды малых масс. Возраст ярких гигантов не превышает нескольких десятков миллионов лет, тогда как возраст слабых звезд-карликов может насчитывать миллиарды лет: первые гораздо быстрее расходуют свое ядерное топливо, чем вторые. Отсюда следует, что барстеры - это старые системы, в которых магнитное поле успело со временем в какой-то степени ослабнуть, а пульсары - это относительно молодые системы и потому магнитные поля в них. сильнее. Может быть, барстеры когда-то в прошлом пульсировали, а, пульсарам еще предстоит вспыхивать в будущем. Известно, что самые молодые и яркие звезды Галактики находятся в ее диске, вблизи галактической плоскости. Естественно поэтому ожидать, что и рентгеновские пульсары с их яркими звездами-гигантами располагаются преимущественно у галактической плоскости. Их общее распределение по небесной сфере должно отличаться от распределения барстеров, старых объектов, которые, как и все старые звезды Галактики концентрируются не к ее плоскости, а к галактическому центру. Наблюдения подтверждают эти соображения: рентгеновские пульсары действительно находятся в диске Галактики, в сравнительно узком слое по обе стороны галактической плоскости. Такое же распределение на небе обнаруживают и пульсары, излучающие радиоимпульсы, - радиопульсары.. Радиопульсары

Распределение радиопульсаров на небесной сфере позволяет заключить прежде всего, что эти источники принадлежат нашей Галактике: они очевидным образом концентрируются к ее плоскости служащей, экватором галактической координатной сетки. Объекты, которые никак не связаны с галактикой, никогда не показали бы никакой, преимущественной ориентации такого рода. Распределение по направлениям говорит в этом случае о реальном пространственном расположении источников: такая картина может возникнуть лишь тогда, когда источники находятся в диске Галактики. Некоторые из них лежат заметно выше или ниже экватора; но они тоже расположены в диске, около плоскости Галактики, только ближе к нам, чем большинство остальных пульсаров. Ведь вместе с Солнцем мы находимся почти точно в галактической плоскости, и потому направление от нас на близкие объекты внутри хотя бы и узкого слоя может быть, вообще говоря, любым. Близких пульсаров сравнительно мало и они не затемняют общую картину. Если радиопульсары располагаются вблизи галактической плоскости, среди самых молодых звезд Галактики, то разумно полагать, что и сами они являются молодыми. Об одном из них, пульсаре Крабовидной туманности, определенно известно, что он существует всего около тысячи лет - это остаток вспышки сверхновой 1054 года; его возраст значительно меньше времени жизни ярких звезд-гигантов, 10 миллионов лет, не говоря уже о звездах-карликах, средний возраст которых еще в 1000 раз больше. Строгая периодичность следования импульсов, расположение в плоскости Галактики и молодость - все это сближает радиопульсары с рентгеновскими пульсарами. Но во многих других отношениях они резко отличаются друг от друга. Дело не только в том, что одни испускают радиоволны, а другие рентгеновские лучи. Важнее всего то, что радиопульсары - это одиночные, а не двойные звезды. Известно всего три радиопульсара, имеющих звезду-компаньона. У всех остальных, а их более трехсот пятидесяти, никаких признаков двойственности не замечается. Отсюда немедленно следует, что физика радиопульсаров должна быть совсем иной, чем у барстеров или рентгеновских пульсаров. Принципиально иным должен быть источник их энергии - это, во всяком случае, не аккреция. Другой важнейший факт: спектр излучения радиопульсаров очень далек от какого-либо подобия универсальному чернотельному спектру, который характерен для излучения нагретых тел. Это означает, что излучение радиопульсаров никак не связано с нагревом нейтронной звезды, с температурой, с тепловыми процессами на ее поверхности. Излучение электромагнитных волн, не связанное с нагревом тела, называют нетепловым. Такое излучение не редкость в астрофизике, физике и технике. Вот простой пример. Антенна радиостанции или телецентра - это проводник определенного размера и формы. В нем имеются свободные электроны, которые под действием специального генератора совершают согласованные движения вдоль проводника туда и обратно с заданной частотой. Так как электроны колеблются «в унисон», то и излучают они согласованно: все излучаемые в пространство электромагнитные волны имеют одинаковую частоту - частоту колебаний электронов. Так что спектр излучения антенны содержит только одну частоту или длину волны. Сведения о спектре излучения радиопульсаров удалось получить, прежде всего, благодаря наблюдениям самого яркого из них - пульсара Крабовидной туманности. Замечательно, что его излучение регистрируется во всех диапазонах электромагнитных волн - от радиоволн до гамма-лучей. Больше всего энергии он испускает именно в области гамма-лучей (так что пульсар вполне заслуживает названия гамма-пульсара): принимаемый гамма-поток в рентгеновской области в 5-10 раз меньше. В области видимого света он еще в десять раз меньше. Слабее всего поток в радиодиапазоне: Можно проверить, что ни при какой температуре излучение нагретого тела не может обладать таким распределением энергии по областям спектра. Кроме пульсара Крабовидной туманности, «миллисекундного» пульсара в созвездии Лисички и еще одного пульсара в созвездии Парусов, все остальные радиопульсары регистрируются лишь благодаря излучению в радиодиапазоне. Не исключено, что они излучают и в других областях спектра в видимом свете, в рентгеновских и гамма-лучах, подобно пульсару Крабовидной .туманности (хотя, вероятно, и не так интенсивно, как он); но они находятся дальше от нас, а чувствительность существующих радиотелескопов выше чувствительности оптических, рентгеновских и гамма-телескопов. Интересно, что уже и одних только данных о светимости пульсаров в радиодиапазоне - без каких-либо сведений об излучении на более коротких длинах волн достаточно, чтобы убедиться в нетепловом, нечернотельном характере их излучения. Расстояние до Крабовидной туманности известно. Светимость этого пульсара приблизительно в тысячу раз больше светимости Солнца на всех длинах волн. Здесь, однако, нужно сделать одно замечание. Наша оценка была бы вполне справедлива, если бы пульсар излучал одинаково во всех направлениях. На самом деле его излучение не изотропно, оно обладает определенной направленностью. Мы не знаем, как выглядит луч этого «маяка»: какова его ширина и как ось вращения пульсара ориентирована относительно Земли.

5. Источник энергии

Периодичность импульсов радиопульсара выдерживается с удивительной точностью. Это самые точные часы в природе. И все же для многих пульсаров удалось зарегистрировать и регулярные изменения их периодов. Конечно, это исключительно малые изменения и происходят они крайне медленно, так что регулярность следования импульсов нарушается лишь очень слабо. Характерное время изменения периода составляет для большинства пульсаров приблизительно миллион лет; это означает, что только за миллион лет можно ожидать заметного - скажем, вдвое - изменения периода. Во всех известных случаях радиопульсары увеличивают, а не уменьшают свой период. Иными словами, их вращение замедляется со временем. Что-то тормозит вращение нейтронной звезды, на что-то тратится ее энергия вращения. Так не служит ли вращение источником, питающим излучение пульсара?

Чтобы это проверить, нужно сделать прежде всего энергетическую оценку. Если пульсар действительно излучает за счет вращения, то кинетическая энергия вращения должна обеспечивать наблюдаемую мощность излучения, его светимость. Ориентировочную оценку кинетической энергии вращения звезды можно получить по простой формуле

Таков запас энергии вращения. Оценим теперь темп ее использования. Если период пульсара увеличивается вдвое за время t, то за то же время кинетическая энергия вращения нейтронной звезды уменьшается в 4 раза

Значит, за время t теряется на ? начального запаса энергии вращения. Средняя потеря энергии в единицу времени: (1.5)

Мы приняли здесь в качестве t характерное время, равное одному миллиону лет, и воспользовались предыдущей оценкой энергии вращения Е.

Можно, таким образом, сказать, что предположение о вращении как источнике энергии пульсара выдерживает первую проверку: кинетическая энергия вращения нейтронной звезды достаточно велика, и она способна служить резервуаром, из которого излучение черпает свою энергию. При этом на излучение тратится только небольшая доля общего расхода энергии.

6. Магнитосфера

Возможность и даже необходимость существования такого облака доказали американские астрофизики-теоретики П. Голдрайх и В. Джулиан. Они изучили электромагнитные явления, происходящие не на световом цилиндре, где рождается магнитно-дипольное излучение, а вблизи самой поверхности нейтронной звезды. Здесь намагниченная нейтронная звезда способна «работать» подобно динамомашине: ее вращение вызывает появление сильных электрических полей, а с ними и токов, т. е. направленных движений заряженных частиц. Отношение электрической силы к силе тяжести, испытываемой электроном, очень велико: Такая же оценка для протона показывает, что действующая на него электрическая сила в миллиард раз больше силы притяжения к нейтронной звезде. Это означает, что силы тяготения совершенно несущественны для заряженных частиц по сравнению с электрическими силами у самой поверхности нейтронной звезды. Электрические силы здесь необычайно велики и они способны беспрепятственно управлять движением электронов и протонов: они могут отрывать их от поверхности нейтронной звезды, ускорять их, сообщая частицам огромные энергии. Электрическая сила, действующая в поле на частицу зарядом, совершает на пути частицы работу. Значит, проходя в электрическом поле расстояние, сравнимое с радиусом нейтронной звезды (например, от экватора до одного из полюсов), частица приобретает энергию

Это действительно огромная энергия, на много порядков превышающая даже энергии покоя электрона и протона. Гигантская энергия частиц соответствует их скоростям движения, приближающимся к скорости света, а фактически совпадающим с ней. Частицы высоких энергий, отрываемые от поверхности нейтронной звезды и ускоряемые сильным электрическим полем, создают поток, исходящий от нейтронной звезды и похожий на солнечный или звездный ветер. Магнитное поле увлекает этот поток во вращение вместе о нейтронной звездой. Так вокруг нее возникает расширяющаяся и вращающаяся магнитосфера. Рождение и ускорение частиц, образующих магнитосферу, требует значительной энергии, которая черпается из кинетической энергии вращения нейтронной звезды. Теоретический анализ, проделанный П. Голдрайхом и В.; Джулианом, показывает, что на это тратится приблизительно столько же энергии, сколько и на магнитно-дипольное излучение. При этом и само магнитно-дипольное излучение пополняет запас энергии магнитосферы, оно практически не выходит наружу и поглощается магнитосферой, передавая свою энергию ее частицам. Нет сомнения, что именно в магнитосфере нейтронной звезды и разыгрываются многообразные физические процессы, определяющие все наблюдаемые проявления пульсара. Полной и исчерпывающей теории этих процессов пока нет; теория радиопульсаров находится в процессе развития, и даже на главные вопросы она еще не может дать законченного и убедительного ответа. Нас, прежде всего, интересует, как возникает направленность в излучении пульсара, создающая этот естественный радиомаяк. Сейчас можно изложить лишь самые предварительные соображения, не претендующие на строгую доказательность, но содержащие, тем не менее, ряд важных идей. Вероятно, нужно исходить из того, что частицы высокой энергии, заполняющие магнитосферу пульсара, способны излучать электромагнитные волны очень высокой частоты, или, на квантовом языке, фотоны очень высокой энергии. Один из физических механизмов излучения связан с движением частиц в сильных магнитных полях. Частицы следуют главным образом вдоль магнитных силовых линий, а так как силовые линии изогнуты, движение частиц не может быть прямолинейным и равномерным. Отклонение же от прямолинейного и равномерного движения означает ускорение (или торможение) частицы и, следовательно, сопровождается излучением электромагнитных волн. Согласно расчетам электромагнитные волны такого происхождения принадлежат к гамма-диапазону. В свою очередь гамма-фотоны способны рождать (в присутствии сильного магнитного поля) пары электронов и позитронов. Электроны и позитроны также излучают электромагнитные волны при своем движений в магнитном поле, а эти новые волны способны рождать новые пары частиц и т.д. Такой каскад процессов развивается главным образом вблизи магнитных полюсов нейтронной звезды, где сходятся магнитные силовые линии и поле особенно велико. Здесь формируются, как можно полагать, направленные потоки согласованно движущихся частиц, которые - как в антенне - излучают согласованно и направленно, создавая луч пульсара. Магнитная ось звезды не совпадают с ее осью вращения, и потому этот луч вращается подобно лучу маяка. Но как в действительности это происходит, еще предстоит выяснить.

Основная доля энергии вращения, теряемой нейтронной звездой, преобразуется не в наблюдаемое излучение пульсара, а в энергию частиц, ускоряемых в магнитосфере нейтронной звезды. Радиопульсары являются, таким образом, мощным источником частиц высоких энергий. Электроны высоких энергий, рождаемые пульсаром Крабовидной туманности, непосредственно проявляют себя в свечении туманности. Об этом речь впереди, а здесь стоит сказать несколько слов об эволюции и дальнейшей судьбе радиопульсаров. С течением времени пульсар теряет свою энергию вращения и магнитную энергию, так что постепенно и частота вращения, и магнитное поле нейтронной звезды убывают. Изза этого уменьшается электрическое поле у поверхности звезды, снижается эффективность отрыва частиц и их ускорения. Рано или поздно частицы высоких энергий перестанут рождаться, и радиоизлучение пульсара прекратится. Если бы радиопульсар составлял пару вместе с обычной звездой, он мог бы тогда превратиться в барстер, излучение которого питается аккреционным потоком, увлекаемым с поверхности звезды-компаньона. Но (за очень редким исключением, как говорилось) радиопульсары - это одиночные нейтронные звезды, а не члены тесных двойных систем. И тем не менее свечение, хотя и довольно слабое, все же может возникать. По мнению советского астрофизика А. И. Цыгана оно может быть обязано аккреции нейтрального межзвездного газа, сквозь который движется потухший радиопульсар. Излучению такого происхождения отвечает светимость, и большая часть испускаемых квантов принадлежит гамма-диапазону. Поиски таких бывших пульсаров, а ныне гамма-звезд - одна из интересных задач гамма-астрономии.

7. Пульсары и космические лучи

Еще в 1934 году В. Бааде и Ф. Цвикки указали на возможную связь между вспышками сверхновых, нейтронными звездами и космическими лучами - частицами высоких энергий, приходящими на Землю из космического пространства. Космические лучи были открыты более 60 лет назад и с тех пор служат предметом тщательного изучения. Интерес к ним связан, прежде всего, с возможностью использовать их для исследования взаимодействий элементарных частиц при высоких энергиях, недостижимых в лабораторных ускорительных устройствах. Наибольшая энергия частицы, зарегистрированная в космических лучах: тогда как на лучших современных ускорителях достигаются энергии на 8 порядков меньше. Частицы высокой энергии, приходящие к Земле из межпланетного и межзвездного пространства, порождают в земной атмосфере новые, вторичные частицы, тоже обладающие немалыми энергиями. Но более всего интересны, очевидно, исходные, первичные частицы. Они представляют собою главным образом протоны; среди них имеются в небольшом числе и атомные ядра таких элементов, как гелий, литий, бериллий, углерод, кислород и так далее, вплоть до урана. Кроме редких случаев экстремально больших энергий, энергии в космических лучах в расчете на один нуклон (протон или нейтрон) не превышают

Средняя концентрация частиц космических лучей в межзвездном пространстве нашей Галактики оценивается величиной

8. Средняя энергия частицы

Последняя величина сравнима с плотностью энергии магнитного поля Галактики и близка к средней плотности кинетической энергии хаотических движении облаков межзвездного газа. Электронов в космических лучах не более 1-2 %. Поток космических лучей изотропен - он приходят к Земле равномерно со всех сторон (кроме, конечно, частиц, испускаемых Солнцем). Космические лучи, распространяясь в межзвездных магнитных полях, способны создавать синхротронное излучение. Общее радиоизлучение Галактики известно с конца 40-х годов. Однако радиомощность Галактики несравненно больше. Объяснение общего радиоизлучения Галактики как синхротронного излучения электронов космических лучей предложено В. Л. Гинзбургом в 1950-1951 годы. Основной вопрос физики космических лучей с самого начала ее развития - природа их высокой энергии. Он до сих пор еще не решен. Обсуждается целый ряд интересных возможностей: ускорение частиц в межзвездных магнитных полях (как это предполагал еще в 40-е годы Э. Ферми), в оболочках, сбрасываемых при вспышках сверхновых (эта идея развивается сейчас многими авторами), в ядре Галактики или даже вне ее. Открытие пульсаров, анализ их электродинамики, данные о частицах высокой энергии в Крабовидной туманности, получаемые из анализа ее синхротронного излучения, все это указывает на пульсары как на эффективный источник космических лучей. Давняя идея В. Бааде и Ф. Цвикки о Единстве происхождения нейтронных звезд и космических лучей приобретает сейчас новые основания.

9. Пульсар на месте сверхновой

Новые данные, полученные от Chandra X-ray Observatory, показывают, что хорошо известный пульсар созвездия Стрельца связан со взрывом сверхновой 386 года нашей эры, которую наблюдали астрономы в древнем Китае.

В 70-х годах радиоастрономы открыли расширяющуюся газовую туманность с частицами высокой энергии, известную как G11.2-0.3. Если результаты подтвердятся, то это будет второй пульсар, связанный со взрывом сверхновой. За прошедшие 2000 лет было менее 10 сообщений, которые возможно описывали вспышку сверхновой. В настоящее время доказано, что только в Крабовидной туманности находится пульсар, который образовался после взрыва сверхновой в 1054 г. таким образом, это единственная нейтронная звезда с известным возрастом. На снимке хорошо видно, что пульсар находится строго в центре остатка от взрыва сверхновой. Скорость вращения пульсара составляет 14 оборотов в секунду. Он был сформирован после взрыва сверхновой в 386 году - ему 1615 лет. Однако космологи и астрофизики, используя модели на основе скорости вращения пульсара, определили его возраст около 24000 лет, что очень сильно расходится с предыдущей версией. Но этому есть логическое объяснение. Наука развивается и не стоит на месте, поэтому в зависимости от современности оборудования и технологий и многого другого, данные меняются с каждым новым исследованием.

Список литературы
1. Астрономия наших дней [Книга] / авт. И.А. Климишин. - Москва : [б.н.], 1980.

2. Звезды. Галактики. Метагалактики [Книга] / авт. Т.А. Агекян. - Москва : [б.н.], 1982.

3. Земное эхо солнечных бурь [Книга] / авт. А.А. Чихевский. - Москва : [б.н.], 1976.

4. Небо. Звезды. Вселенная [Книга] / авт. Арзуманян А.М.. - Москва : [б.н.], 1987.

5. Очерки о Вселенной [Книга] / авт. Б.А. Воронцов. - Москва : [б.н.], 1976.

6. Сокровища звездного неба [Книга] / авт. Ф.Ю. Зигель. - Москва : [б.н.], 1976.

Размещено на .ru

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?