Контроль качества геофизического исследования скважин - Курсовая работа

бесплатно 0
4.5 102
Структура системы контроля качества результатов геофизического исследования скважин (ГИС). Подготовка аппаратуры к проведению ГИС. Структурная схема аппаратуры. Технология проведения исследования скважины. Компоновка элементов зондового устройства.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Одной из важнейших задач нефтепромысловой геофизики является повышение точности и достоверности количественной интерпретации промыслово-геофизических данных. В настоящее время на геофизических предприятиях, осуществляющих промыслово-геофизические исследования в бурящихся нефтяных и газовых скважинах, в эксплуатационных находится большое количество разнотипных средств измерений (СИ). В силу многих причин - изготовления аппаратуры на предприятиях различных ведомств с разным техническим уровнем, отсутствия для отдельных типов аппаратуры необходимых средств метрологического контроля, нарушения правил эксплуатации аппаратуры и др. Стандартизация результатов геофизических измерений в скважинах может осуществляться несколькими путями.Аппаратура ВИКИЗ обеспечивает измерение разностей фаз между ЭДС, наведенными в измерительных катушках пяти электродинамически подобных трехкатушечных зондов, и потенциала самопроизвольной поляризации ПС.Конструктивно зондовое устройство выполнено на едином стержне и все катушки размещены соосно. Геометрические характеристики зондов представлены в таблице: Схема зонда Длина, м База, м Точка записи, м Частота, МГЦ Все генераторные и измерительные катушки зондов меньшей длины размещены между катушками двухметрового зонда.Второй включается катушка Г2 и измеряется разность фаз между ЭДС, наведенными в измерительных катушках И2, И3. Электронная схема содержит: усилители мощности - 1-5; смесители - 6-11; аналоговый коммутатор - 12; перестраиваемый гетеродин - 13; устройство управления скважинным прибором - 14; усилители промежуточной частоты - 15, 16; опорный кварцевый генератор - 17; широкополосный фазометр - 18; передатчик телесистемы - 19; выходное устройство - 20; блок питания - 21. Энергонезависимое ОЗУ обеспечивает хранение значений «нулей воздуха» скважинного прибора, которые учитываются при каждом измерении. Поверочная схема представляет собой исходный документ, устанавливающий метрологическое соподчинение эталонов, образцовых СИ и порядок передачи размера единицы образцовым и рабочим СИ. Структура поверочной схемы и количество ступеней передачи единицы измерений от исходного до рабочих СИ определяются, с одной стороны, требуемой точностью рабочих СИ, их общим количеством и степенью рассредоточения по территории страны, с другой - точностными характеристиками существующих методик передачи единицы от уровня к уровню, которые зависят, в свою очередь, от погрешностей образцовых СИ и методик передачи единиц.Аппаратура ВИКИЗ состоит из скважинного прибора и наземной панели. Скважинный прибор содержит зондовый комплекс и электронно-измерительную систему. Электронно-измерительная система обеспечивает: возбуждение электромагнитных полей в околоскважинном пространстве; преобразование сигналов от измерительных катушек; изменение разности фаз и потенциала ПС; передачу информации по каротажному кабелю в наземную панель.Представляется, что система контроля и оценки качества результатов ГИС должна содержать этапы, соответствующие системе организации и проведения геофизических исследований. Многозначные образцовые меры измерений (стандартные образцы состава и свойств горных пород, поверочные установки, имитаторы), воспроизводящие несколько значений измеряемых физических величин в рабочем диапазоне их измерения. Контрольно-поверочная скважина, максимально удовлетворяющая требованиям оценки сходимости и воспроизводимости результатов измерений для всей измерительной системы (скважинный прибор, кабель, наземная измерительная панель, устройство для регистрации результатов измерений). Аппаратура удовлетворяет по всей совокупности эксплуатационных и метрологических параметров нормативно-технической документации (НТД) и условиям ее применения и передается для производственного использования. Осуществляется в стационарных условиях геофизического предприятия, эксплуатирующего аппаратуру с периодичностью, регламентированной НТД на методы и средства поверки.Главная идея приема и обработки сигнала: сигнал, независимо от его частоты, сначала преобразовывается в сигнал с другой частотой, постоянной для данного типа приемника, а затем уже на этой, как ее называют, промежуточной частоте производится усиление. На антенну поступает сигнал UC, источник второго напряжения UГ - маломощный генератор, так называемый гетеродин, его частота ?Г (рис. Оба сигнала поступают на вход нелинейного элемента (смесителя) - на выходе получаем сигнал на промежуточной частоте. Технологический процесс регулировки автогенератора состоит из проверки монтажа, режимов питания, работоспособности схемы, наличия генерации по всему диапазону и отсутствия паразитной модуляции, а также проверки градуировки шкалы. Для измерения высокочастотных напряжений автогенератора пользуются электронными вольтметрами, для измерения колебательного тока в цепи колебательного контура - высокочастотными миллиамперметрами, а для измерения частоты колебаний - гетеродинным волномером.Частота с изменением температуры вследствие тепловой инерции изменяется более медлен

План
Содержание

I. ВВЕДЕНИЕ

II. АНАЛИЗ СТРУКТУРНОЙ СХЕМЫ АППАРАТУРЫ

1. ПРОСТРАНСТВЕННАЯ КОМПОНОВКА ЭЛЕМЕНТОВ ЗОНДОВОГО УСТРОЙСТВА

2. СТРУКТУРНАЯ СХЕМА АППАРАТУРЫ

III. ПОДГОТОВКА АППАРАТУРЫ К ПРОВЕДЕНИЮ ГИС (НАСТРОЙКА, ПОВЕРКА, ГРАДУИРОВКА)

IV. ТЕХНОЛОГИЯ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЯ СКВАЖИНЫ

V. СТРУКТУРА СИСТЕМЫ КОНТРОЛЯ КАЧЕСТВА РЕЗУЛЬТАТОВ ГИС

VI. ДЕСТАБИЛИЗИРУЮЩИЕ ФАКТОРЫ И МЕТОДЫ СТАБИЛИЗАЦИИ

1. ТЕМПЕРАТУРНЫЕ ВЛИЯНИЯ

2. КВАРЦЕВАЯ СТАБИЛИЗАЦИЯ ЧАСТОТЫ

3. МЕХАНИЧЕСКИЕ ДЕФОРМАЦИИ ДЕТАЛЕЙ

4. НЕПОСТОЯНСТВО НАПРЯЖЕНИЙ ИСТОЧНИКА ПИТАНИЯ

5. ИЗМЕНЕНИЕ ВЛАЖНОСТИ И АТМОСФЕРНОГО ДАВЛЕНИЯ

6. СМЕНА ИЗНОШЕННЫХ ЧАСТЕЙ ГЕНЕРАТОРА

7. ВЛИЯНИЕ ПОСТОРОННИХ ПРЕДМЕТОВ

VII. ЗАКЛЮЧЕНИЕ

VIII. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

Введение
Одной из важнейших задач нефтепромысловой геофизики является повышение точности и достоверности количественной интерпретации промыслово-геофизических данных. Решение этой задачи возможно лишь при высокой точности скважинных измерений и воспроизводимости оценок параметров разреза, получаемых всем арсеналом технических средств. В настоящее время на геофизических предприятиях, осуществляющих промыслово-геофизические исследования в бурящихся нефтяных и газовых скважинах, в эксплуатационных находится большое количество разнотипных средств измерений (СИ). В силу многих причин - изготовления аппаратуры на предприятиях различных ведомств с разным техническим уровнем, отсутствия для отдельных типов аппаратуры необходимых средств метрологического контроля, нарушения правил эксплуатации аппаратуры и др. - качество геофизических измерений не всегда удовлетворяет требованиям нефтепромысловой геофизики. Для достижения единства и регламентированной точности скважинных измерений необходимо дальнейшее совершенствование технико-методических основ количественных приемов оценки и контроля качества геофизических измерений.

Стандартизация результатов геофизических измерений в скважинах может осуществляться несколькими путями. Один из них - традиционный путь метрологического обеспечения СИ с привлечением методом физического моделирования, сосредоточения физических моделей в испытательных центрах и передачи мер эталона образцовым и поверочным устройствам, являющимся средствами метрологического контроля геофизической аппаратуры в производственных условиях. В последние годы интенсивно развивались методологические основы другого приема стандартизации промыслово-геофизической аппаратуры - с использованием разрезов специально обустроенных контрольных скважин. При этом подходе геофизические информационно-измерительные системы (ИИС) поверяются в динамическом режиме, т.е. в котором осуществляются реальные скважинные измерения.

Предлагаемая работа посвящена исследованию контроля качества такого метода, как высокочастотное индукционное каротажное изопараметрическое зондирование (ВИКИЗ), базирующегося на измерении относительных фазовых характеристик. Результаты интерпретации диаграмм ВИКИЗ в комплексе с данными других методов ГИС и петрофизической информацией позволяют определять коэффициент нефтегазонасыщения, литологию терригенного разреза, оценивать неоднородность коллекторских свойств на интервалах пористо-проницаемых пластов, выделять интервалы уплотненных песчаников с карбонатным или силикатным цементов и др.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?