Измерение электропроводности исследуемых растворов. Удельное электрическое сопротивление как основная константа, характеризующая электрические свойства вещества. Определение электросопротивления проводника. Кондуктометрическое титрование раствора.
Кондуктометрия включает прямые методы анализа (используемые, например, в солемерах) и косвенные (например, в газовом анализе) с применением постоянного или переменного тока (низкой и высокой частоты), а также хронокондуктометрию, низкочастотное и высокочастотное титрование. Существует несколько методов кондуктометрического анализа: прямая кондуктометрия - метод, позволяющий непосредственно определять концентрацию электролита путем измерения электропроводности раствора с известным качественным составом; Кондуктометрия относится к наиболее распространенным методам исследования растворов и жидких систем вообще. проводящими принято условно с ? ~10-7 Ом-1·см-1 и выше; Для разбавленных твердых растворов, их удельное электрическое сопротивление по правилу Маттиссена представлено из двух слагаемых: ? = ?(t) ?(x), где ?(t) - электрическое сопротивление чистого металла, зависящее от температуры метала; ?(x) остаточное электрическое сопротивление, не зависящее от температуры и определяется типом примеси и ее концентрацией. Эта формула применима при содержании примеси до 1 ат.% Согласно правилу Линде, добавочное электрическое сопротивление, вызываемое содержанием примеси 1 ат.%, пропорционально квадрату разности валентностей чистого металла и примеси (?z): ??(x) = a b(?z) 2, где a, b - величины, определяющие свойства металла - растворителя.Аналитическое использование кондуктометрии обладает характерными чертами, связанными с низкой селективностью кондуктометрического детектирования. В самом деле, близкие значения эквивалентных электропроводностей ионов не позволяют говорить о том, что какой-либо ион может целиком определять электропроводность всего раствора. Таким образом, измерения электропроводности может приносить реальную аналитическую пользу только в том случае, если соотношение ионов в анализируемой смеси неизменно от пробы к пробе.
Введение
Кондуктометрия (от англ. conductivity - электропроводность и метрия) - совокупность электрохимических методов анализа, основанных на измерении электропроводности растворов.
Кондуктометрия применяется для определения концентрации растворов солей, кислот, оснований, для контроля состава некоторых промышленных растворов.
Достоинства кондуктометрия: высокая чувствительность (ниж. граница определяемых концентраций ~10-4-10-5 М), достаточно высокая точность (относит, погрешность определения 0,1-2%), простота методик, доступность аппаратуры, возможность исследования окрашенных и мутных растворов, а также автоматизации анализа.
Кондуктометрический анализ основан на изменении концентрации вещества или химического состава среды в межэлектродном пространстве; он не связан с потенциалом электрода, который обычно близок к равновесному значению. Кондуктометрия включает прямые методы анализа (используемые, например, в солемерах) и косвенные (например, в газовом анализе) с применением постоянного или переменного тока (низкой и высокой частоты), а также хронокондуктометрию, низкочастотное и высокочастотное титрование.
Объект контрольной работы - электрохимические методы исследования.
Предметом работы является кондуктометрия.
Цель работы - раскрыть сущность кондуктометрии.
Для выполнения поставленной цели необходимо решить ряд задач: раскрыть понятие кондуктометрии;
охарактеризовать методы кондуктометрии;
рассмотреть кондуктометрическое титрование.
1. Теоретические основы кондуктометрического метода анализа
Кондуктометрические методы анализа основаны на измерении электропроводности исследуемых растворов. Существует несколько методов кондуктометрического анализа: прямая кондуктометрия - метод, позволяющий непосредственно определять концентрацию электролита путем измерения электропроводности раствора с известным качественным составом;
кондуктометрическое титрование - метод анализа, основанный на определении содержания вещества по излому кривой титрования. Кривую строят по измерениям удельной электропроводности анализируемого раствора, меняющейся в результате химических реакций в процессе титрования;
хронокондуктометрическое титрование - основано на определении содержания вещества по затраченному на титрование времени, автоматически фиксируемого на диаграммной ленте регистратора кривой титрования.
Кондуктометрия
Кондуктометрия относится к наиболее распространенным методам исследования растворов и жидких систем вообще. проводящими принято условно с ? ~10-7 Ом-1·см-1 и выше;
умеренно проводящими с ?: 10-7 - 10-11 Ом-1 ·м-1;
непроводящими - ? ниже 10-11 Ом-1 ·м-1.
Данная классификация условна.
В ФХА принято пользоваться диаграммами «удельная электропроводность ? - состав». Поскольку электропроводность относится к заведомо не аддитивным свойствам, способ выражения концентрации при этом может быть произвольным, однако для наглядности чаще всего выбирают мольные доли. Диаграммы «молекулярная электропроводность ? - состав» используется реже.
2. Электрическое сопротивление
Основной константой, характеризующей электрические свойства вещества, является удельное электрическое сопротивление, зависящее от природы вещества и от температуры.
Согласно закону Ома удельное электрическое сопротивление (?) [Ом·м]: , где R - электрическое сопротивление, ом; S - площадь поперечного сечения, м?; l - длина, м.
Температурная зависимость электрического сопротивления металлов подчиняется закону: ?t = ?0 (1 ?t), где ? - температурный коэффициент.
Электрическая проводимость обусловлена движением заряженных частиц и зависит от количества носителей заряда и их подвижности.
Для разбавленных твердых растворов, их удельное электрическое сопротивление по правилу Маттиссена представлено из двух слагаемых: ? = ?(t) ?(x), где ?(t) - электрическое сопротивление чистого металла, зависящее от температуры метала; ?(x) остаточное электрическое сопротивление, не зависящее от температуры и определяется типом примеси и ее концентрацией.
Эта формула применима при содержании примеси до 1 ат.% Согласно правилу Линде, добавочное электрическое сопротивление, вызываемое содержанием примеси 1 ат.%, пропорционально квадрату разности валентностей чистого металла и примеси (?z): ??(x) = a b(?z) 2, где a, b - величины, определяющие свойства металла - растворителя.
Правило Маттиссена достаточно хорошо выполняется для большинства разбавленных металлических расплавов, правилу Линде многие расплавы не подчиняются.
Механизм электрической проводимости в металлических расплавах и твердых металлах принципиально не различается.
Переход металла из твердого в жидкое состояние сопровождается некоторым изменением электрических свойств: при плавлении удельное электросопротивление большинства металлов увеличивается в 1,5?2 раза. Для некоторых металлов (Bi, Sb, As) характерно аномальное поведение: при плавлении их удельное электросопротивление уменьшается.
Электрическая проводимость оксидных расплавов близка к электропроводимости типичных электролитов (галлогениды щелочных металлов) и зависит от состава шлака и температуры. Это является одним из доказательств ионной теории строения шлаковых расплавов.
Их ионная структура определяет преимущественно ионную проводимость в расплавленном состоянии. Электропроводимость определяется, в первую очередь, размерами катионов и анионов и силами взаимодействия между ними.
Повышение температуры увеличивает электропроводимость оксидных расплавов. При переходе из твердого состояния в жидкое электропроводимость резко возрастает.
Уравнение применимо и для оксидных расплавов, в которых перенос тока осуществляется только катионами (которые много меньше по размеру, чем анионы), т.е. если радиусы анионов велики по сравнению с катионами, и анионы остаются почти неподвижными в электрическом поле.
При соблюдении уравнения Я.И. Френкеля экспертные данные укладываются в прямолинейную зависимость. Отклонения свидетельствуют о структурных изменениях, которые могут быть связаны с разложением комплексных анионов на простые.
Контактные методы измерения электрической проводимости расплавов
В основе лежит закон Ома: на фиксированном участке проводника из жидкого металла, имеющего длину l и площадь поперечного сечения S, определяется электросопротивление R?.
Из соотношения устанавливают значения удельной электропроводимости металла.
Для определения электросопротивления проводника применяют следующие электрические измерительные схемы: схема вольтметра-амперметра, в которой при помощи вольтметра измеряют падение напряжения на концах проводника Vx, а амперметром - силу тока I. В этом случае значение Rx определяют по закону Ома: . Точность метода невысока (? 1%) и определяется классом точности приборов.
Компенсационный метод: в цепь включают эталонное сопротивление Rэ и с помощью потенциометра измеряют падение напряжения на проводнике Vx и эталоне Vэ. Расчет по формуле: более точный метод.
С использованием моста Уитстона или двойного моста Томсона. Точность 0,2-0,3%, но необходимо учитывать контактные сопротивления и сопротивление проводов.
Определение электропроводимости расплавов связано с техническими трудностями: контакт расплава с электродами, подбор материалов.
Конструкции измерительных ячеек с различным расположением калиброванного канала, в котором проводник из жидкого металла, электроды токовые и потенциальные.
Для расчета удельного электрического сопротивления (или электрической проводимости) по измеренному (методом моста или методом вольтметра-амперметра) значению электрического сопротивления расплава необходимо знать константу ячейки. Градуировку ячейки обычно производят водным раствором (при комнатной температуре) или расплавом NACL или KCL (при 700-900°С).
Значение константы ячейки определяют по формуле:
где r - сопротивление проводящих проводов и электродов при соответствующих температурах опыта; Rx измеряемое сопротивление.
Одним из способов определения r является предварительное определение.
Чаще используют другой метод, заключающийся в измерении электросопротивления при двух последовательных погружениях электродов на различную глубину. Этот способ позволяет исключить поправку на сопротивление проводов (r), т. к. расчет удельного электрического сопротивления ведут по разности измеренных сопротивлений:
где К1 и К2 константы ячейки при двух последовательных погружениях электродов.
Конструкция установки разработанной Б.М. Лепинских и О.А. Есиным (УПИ) с мостовой схемой измерения и ячейкой типа электрод-электрод.
Регулирование глубины погружения электродов производится вращением стержня (#), при этом происходит подъем или опускание тигля при неподвижных электродах.
Среднее значение константы ячейки устанавливают градуированием по 0,1 н раствору KCL. Этот метод используется для определения электрической проводимости двойных шлаковых систем. Схема моста позволяет измерять сопротивление расплавов с точностью до 0,01 ом. Относительная ошибка определения удельной электрической проводимости двойных шлаковых систем. Схема моста позволяет измерять сопротивление расплавов с точностью до 0,01 ом. Относительная ошибка определения удельной электрической проводимости достигает 11,8%.
3. Кондуктометрическое титрование
Несомненно, большими аналитическими возможностями обладает кондуктометрическое титрование. Титрование позволяет восполнить недостаток селективности определения применением селективного к анализируемому иону титранта. Известны примеры кислотно-основного, осадительного, комплексонометрического титрований. Точность кондуктометрического титрования составляет 1%, но если принять меры по термостатированию анализируемого раствора, то точность определения можно в несколько раз увеличить.
Типичный вид кривой кондуктометрического титрования представлен на рисунке 1.
Рис. 1
Точка эквивалентности на графике находится пересечением двух прямых. Одна прямая (до точки эквивалентности) отражает изменение концентрации анализируемого иона и ионов титранта, а другая (после точки эквивалентности) является следствием увеличения концентрации ионов титранта.
Однако не всегда кривая титрования имеет такой вид. На рис. 2 приведены в качестве примера кривые титрования, полученные в результате различных аналитических определений.
Рис. 2
Вид кривых очевидно различен. В связи с этим возникает закономерный вопрос о причинах различий и возможности прогнозирования вида кривой на основании данных о свойствах анализируемого иона и вещества титранта. В большинстве случаев прогноз возможен, поскольку вид кривой титрования определяется разностью эквивалентных электропроводностей анализируемого иона и ионов, составляющих вещество титранта.
Рассмотрим несложный расчет, позволяющий прогнозировать вид кривой титрования. Прежде всего, нужно ясно представить себе перечень ионов, принимающих участие в процессе титрования. Пусть нам предстоит определить хлорид с помощью осадительной реакции с нитратом серебра (рис. 2а): Cl- Ag NO3- = AGCL NO3 -.
Не вызывает сомнения, что в процессе титрования до точки эквивалентности происходит уменьшение ионов Cl- и NO3- Увеличение концентрации ионов Ag практически не происходит, так как серебро осаждается ионом Cl- В связи с этим можно утверждать, что динамика электропроводности происходит со скоростью, пропорциональной сумме
- l 0Cl l 0NO3 =-0,00655 0,00617 = -0,00038 Ом-1 м? г-экв-1.
Знак "-" перед электропроводностью l 0Cl говорит о том, что концентрация Cl в результате титрования уменьшается. Знак " " перед l 0NO3 свидетельствует об увеличении концентраци NO3.
Полученное в итоге отрицательное число -0,00038 Ом-1 м? г-экв-1 указывает на то, что при титрованиии до точки эквивалентности электропроводность раствора уменьшается.
После точки эквивалентности электропроводность будет повышаться, так как эту ветвь титрования полностью определяет титрант, т.е. ионы Ag и NO3: l 0Ag l 0NO3 = 0,005436 0,00617 = 0,011606 Ом-1 м? г-экв-1.
Прошу обратить внимание на то, что полученное число положительно, что говорит об увеличении электропроводности раствора с каждой порцией титранта.
Кривой титрования (рис. 2б) на рисунке может соответствовать титрование ацетата натрия соляной кислотой. Почему? Потому, что до точки эквивалентности электропроводность раствора будет возрастать, а не убывать как в предыдущем случае: - l 0 ацетат l 0Cl = -0,0034 0,00655 = 0,00315 Ом-1 м? г-экв-1.
В заключении хочу предупредить о том, что любое отклонение кривой титрования от описанных выше видов, должно настораживать, так как при этом увеличивается вероятность появления больших систематических ошибок.
4. Методы кондуктометрии
Контактные методы. Измерения проводят с помощью контактных ячеек (рис. 1, а). При этом используют электроды из Pt, Ti, нержавеющей стали и др. Для измерения растворов с высокой концентрацией электролита (10-2-10-3 М) применяют платинированные электроды с развитой поверхностью.
Рис. 1. Кондуктометрические ячейки и их эквивалентные электрические схемы: а-контактная ячейка; б-емкостная ячейка; в-индуктивная ячейка; R-сопротивление электролита; С1-емкость двойного электрического слоя на межфазной границе электрод - электролит; С2-емкость раствора; С3-емкость конденсатора, образованного раствором, стенкой ячейки и внешним электродом; Zф-фарадеевский импеданс, связанный с протекающей на границе электрод-электролит электрохимической реакцией; L1 и L2-индуктивности соотв. электролита и катушки
В прямой кондуктометри непосредственно определяют концентрацию электролита по х его раствора (если между этими величинами имеется линейная зависимость). Метод применяется главным образом для анализа разбавленных растворов. В случае концентрирированных растворов необходимо строить градуировочные графики. Определение веществ в присутствии других электролитов возможно, если концентрации последних постоянны. На методе прямой кондуктометрия основаны конструкции солемеров и др. кондуктометрических устройств, позволяющих определять олеум. а также различных соли в минеральной, речной и морской водах, физиологических жидкостях и др. Прямую кондуктометрию применяют при контроле регенерации ионитов, очистки воды, промывки осадков, при оценке качества вин, соков и других напитков, чистоты органических растворителей, газов, твердых солей, текстильных материалов, бумаги, зерна, почвы и т.д. Часто анализируемые образцы предварительно сжигают, а выделяющиеся газы поглощают подходящими растворами. По электропроводности поглотителей определяют количества газов (в частности, СО2, NO2, SO2), следовательно - содержание соответствующих элементов, например С, N, S, в металлах, сплавах и органических соединениях.
В косвенной кондуктометрия, позволяющей исследовать смеси электролитов, наряду с электропроводностью растворов измеряют рефракцию, вязкость, РН, плотность или др. величины. Например, при анализе промышленных нитрующих смесей, содержащих H2SO4, HNO3 и Н2О, дополнительно измеряют плотность. По совокупности всех экспериментальных данных определяют количеств, состав смеси.
Бесконтактные методы. Применяются для относительных измерений электропроводности, главным образом для высокочастотного титрования. Измерения проводят с применением емкостных (С-) или индуктивных (L-) ячеек, представляющих собой сосуды из диэлектрика, которые соответственно имеют с внеш. стороны не менее двух металлических электродов (рис. 1, б) или помещены в магнитном поле катушки индуктивности (рис. 1, в). Электроды С-ячейки или катушка индуктивности соединяются с высокочастотным генератором. Электропроводность электролита при токе высокой частоты обусловлена не только реальным перемещением зарядов, но в большей мере потерями электрической энергии в емкостной и индуктивных ячейках. Это отражается на реактивной составляющей X полного сопротивления (импеданса) цепи Z2 = R2 X2, где R-активное сопротивление, X=XL-XC, XL и ХС - соответствующее индуктивное и емкостное сопротивление цепи. Индуктивные ячейки используют обычно для измерения сравнительно высокой электропроводности, а емкостные - для измерения низкой электропроводности. Чувствительность измерения повышается в С-ячейках при использовании диэлектриков с высокой диэлектрической проницаемостью, уменьшении толщины стенок сосуда и увеличении площади электродов, а в L-ячейках - с увеличением объема пробы. Применяются также комбинированные LC-ячейки, RC- и RL-ячейки с повышенной чувствительностью, а также многозвенные ячейки с различным числом электродов, включенных в фазовращающие контуры автоколебательных генераторов. При высокочастотном титровании необходимо предварительно выбирать условия с учетом характеристической кривой ячейки, т.е. зависимости 1/XL или 1/ХС от х (рис. 3). Чем больше интервал между значениями (:0 и (:, в котором эта зависимость линейна, тем удобнее ячейка для измерений. Кроме того, чувствительность измерений различна на различных участках характеристической кривой; например, в случае кривой 1 чувствительность наименьшая в максимуме и наибольшая в точках перегиба.
Рис. 3. Характеристические кривые бесконтактных высокочастотных ячеек: 1,2,3 - зависимости обратных величин соотв. активной, емкостной и индуктивной составляющих Z от lg
Кривые высокочастотного титрования имеют минимум (как кривая 1 на рис. 2) или максимум, а также могут представлять собой М-образные кривые. Бесконтактные методы уступают контактным по точности, но превосходят их по чувствительности. Кроме того, изза отсутствия взаимодействия материала электрода с исследуемой средой эти методы позволяют проводить измерения при высоких и низких температурах, в агрессивных средах, в замкнутых объемах. Они применяются для кислотно-основных титрований на фоне дифференцирующих растворителей (СН3СООН, ацетон, диоксан и др.), детектирования веществ в хроматографии, экспресс-анализа органических соединений, воздуха и промышленных газов, анализа хим. реактивов, контроля качества лекарственных средств в запаянных ампулах, для изучения комплексообразования, гидролиза, сольватации, фазовых переходов.
Вывод
Кондуктометрия - совокупность электрохимических методов анализа, основанных на измерении электропроводности х жидких электролитов, которая пропорциональна их концентрации. Аналитическое использование кондуктометрии обладает характерными чертами, связанными с низкой селективностью кондуктометрического детектирования. В самом деле, близкие значения эквивалентных электропроводностей ионов не позволяют говорить о том, что какой-либо ион может целиком определять электропроводность всего раствора. Таким образом, измерения электропроводности может приносить реальную аналитическую пользу только в том случае, если соотношение ионов в анализируемой смеси неизменно от пробы к пробе. Это, так называемая, задача определения разбавления исходного раствора. Примерами могут служить анализ промывных вод в ваннах отмывки гальванического производства, контроль за приготовлением технологических растворов в производственных условиях и т.п.
Кондуктометрические методы характеризуются высокой экспрессностью, простотой и доступностью измерительных приборов, удобством работы и достаточной точностью. Ценной особенностью кондуктометрических методов является возможность проведения автоматического и дистанционного анализа. Прямые кондуктометрические измерения имеют погрешность 1-2%, при соблюдении специальных условий она снижается до 0,2%.
Список литературы
электропроводность сопротивление проводник кондуктометрический
1. Харитонов Ю.Я. Аналитическая химия. Кн. 2. - М.: Высшая школа. 2003. - 345 с.
1. Брайнина Х.З., Нейман Е.Я., Слепушкин В.В. Инверсионные электроаналитические методы. - М.: Химия, 1988. - 239 с.
2. Электрохимические методы в контроле окружающей среды. - М.: Химия, 1990. - 238 с.
3. Сурова Н.А. Использование вольтамперометрической компьютеризированной системы для анализа экологических объектов // Ученые записки Симферопольского государственного университета. Математика, физика, химия. - 1997. - №4 (43). - С. 112-119.
4. Гейровский Я., Кута Я. Основы полярографии. - М.: Мир, 1965. - 295 с.
5. Ройзенблат Е.М., Веретина Г.И. О чувствительности определения ртути методом инверсионной вольтампереметрии на графитовом электроде // Журн. аналит. химии. - 1974. - Т. 29, №12. - С. 2376-2380.
6. Будников Г.К. Определение следовых количеств веществ как проблема современной аналитической химии // Соросовский Образовательный Журнал. 2000. Т. 6, №3. С. 45-51.
7. Эйхлер В. Яды в нашей пище. М.: Мир, 1993. - 189 с.
8. Золотов Ю.А., Кимстач В.А., Кузьмин Н.М. и др. // Рос. хим. журн. 1993. Т. 37, №4. С. 20-27.
9. Майстренко В.Н., Хамитов Р.З., Будников Г.К. Эколого-аналитический мониторинг супертоксикантов. М.: Химия, 1996. - 319 с.
10. Будников Г.К. Диоксины и родственные соединения как экотоксиканты // Соросовский Образовательный Журнал. 1997. №8. С. 38-44.
Размещено на
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы