История появления "компьютерной мыши". Конструктивные особенности и принцип действия интерактивного устройства. Элементы управления манипулятором. Использование дополнительных кнопок и специального коврика. Преимущества и недостатки оптических датчиков.
Мышь имела три кнопки, а стоимость ее составляла 400 долларов США (сумма, примерно соответствующая «сегодняшней» 1000 долларов). Мышь воспринимает свое перемещение в рабочей плоскости и передает эту информацию компьютеру. При перемещении мыши и/или нажатии/отпускании кнопок мышь передает информацию в компьютер о своих параметрах (величине перемещения и статусе кнопок). При этом вся работа с мышью происходит через драйвер, который отслеживает перемещения мыши, нажатие и отпускание кнопок мыши и обеспечивает работу с курсором мыши - специальным маркером на экран (обычно в виде стрелки), дублирующим все передвижения мыши и позволяющим пользователю указывать мышью на те или иные объекты на экране. · необходимость определенной ориентации мыши относительно коврика, в противном случае мышь работала неправильно;
Введение
Сегодня сложно представить себе работу с персональным компьютером без привычного каждому из нас устройства - мышки. Даже удобный трекбол на дорогом ноутбуке не способен заменить легкую в управлении, быструю и маневренную мышку. Поэтому изобретение мышки стало важным этапом в развитии компьютерных технологий. Компьютерная мышь-механический манипулятор, преобразующий движение в управляющий сигнал. В частности, сигнал может быть использован для позиционирования курсора или прокрутки страниц.
Получила широкое распространение в связи с появлением графического интерфейса пользователя на персональных компьютерах. Помимо мышек встречаются другие устройства ввода аналогичного назначения: трекболы, тачпады, графические планшеты, енсорные экраны.
Первый компьютер, в комплекте с которым шла мышка, был представлен на продажу в 1981 году. Мышь имела три кнопки, а стоимость ее составляла 400 долларов США (сумма, примерно соответствующая «сегодняшней» 1000 долларов). Впервые же компьютерная мышь как интерактивное устройство была представлена миру в декабре 1968 года. Тогда она, громоздкая и неудобная, весьма отдаленно напоминала современный миниатюрный манипулятор. Конструкция, кроме всего прочего, имела множество чисто технических недостатков, поэтому довольно скоро уступила место шариковой мышке - той, которая сегодня уже воспринимается как раритет.
1. Определение понятия «компьютерная мышь»
«Компьютерная мышь» - это одно из указательных устройств ввода, обеспечивающих интерфейс пользователя с компьютером. Мышь воспринимает свое перемещение в рабочей плоскости и передает эту информацию компьютеру.
Программа, работающая на компьютере, в ответ на перемещение мыши производит на экране действие, отвечающее направлению и расстоянию этого перемещения. В универсальных интерфейсах с помощью мыши пользователь управляет специальным курсором.
Мышь представляет собой небольшую коробочку с двумя или тремя клавишами и утопленным, свободно вращающимся в любом направлении шариком на нижней поверхности. Она подключается к компьютеру при помощи специального шнура и требует специальной программной поддержки.
Мышь является наиболее распространенным устройством ввода графической информации в ПЭВМ. При перемещении мыши и/или нажатии/отпускании кнопок мышь передает информацию в компьютер о своих параметрах (величине перемещения и статусе кнопок).
Существует много различных типов устройства типа мышь, отличающихся как по принципу работы (механическая, оптомеханическая и оптическая), так и по способу общения (протоколу) с ПЭВМ.
Для достижения некоторой унификации каждая мышь поставляется обычно вместе со своим драйвером - специальной программой, понимающей данный конкретный тип мыши и предоставляющей некоторый (почти универсальный) интерфейс прикладным программам.
При этом вся работа с мышью происходит через драйвер, который отслеживает перемещения мыши, нажатие и отпускание кнопок мыши и обеспечивает работу с курсором мыши - специальным маркером на экран (обычно в виде стрелки), дублирующим все передвижения мыши и позволяющим пользователю указывать мышью на те или иные объекты на экране.
Так как с помощью мыши нельзя вводить в компьютер серии команд, поэтому мышь и клавиатура - не взаимозаменяемые устройства. Назначение графических оболочек - в обеспечении инициализации множества команд без длительного набора их с клавиатуры. Это снижает вероятность опечаток и экономит время.
На объекте в виде текторграммы выбирается пункт меню или символ и щелчком кнопки мыши инициализируется. Конечно, при наборе или осуществлении некоторых функций применение мыши может быть нерациональным, если, например, эти функции выполняются нажатием функциональных клавиш.
2. Виды мышей по принципу действия
2.1 Оптикомеханические (шариковые) мыши
В оптикомеханических (шариковых) мышах шарик с резиновым покрытием «перекатывается» по поверхности и при своем движении вращает два ролика, отвечающие за перемещение курсора вдоль вертикальной и горизонтальной осей координат. Главным недостатком оптомеханических мышей является наличие движущихся частей в механизме регистрации перемещений.
Другой недостаток шарового привода - это загрязнение шарика и снимающих роликов, приводящее к заеданию мыши и необходимости в периодической ее чистке (отчасти эта проблема сглаживалась путем металлизации роликов). Несмотря на недостатки, шаровой привод долгое время доминировал, успешно конкурируя с альтернативными схемами датчиков. В настоящее время шаровые мыши почти полностью вытеснены оптическими мышами второго поколения.
2.2 Оптические мыши первого поколения
Оптические датчики призваны непосредственно отслеживать перемещение рабочей поверхности относительно мыши. Исключение механической составляющей обеспечивало более высокую надежность и позволяло увеличить разрешающую способность детектора.
Первое поколение оптических датчиков было представлено различными схемами оптопарных датчиков с непрямой оптической связью - светоизлучающих и воспринимающих отражение от рабочей поверхности светочувствительных диодов.
Такие датчики имели одно общее свойство - они требовали наличия на рабочей поверхности (мышином коврике) специальной штриховки (перпендикулярными или ромбовидными линиями). На некоторых ковриках эти штриховки выполнялись красками, невидимыми при обычном свете (такие коврики даже могли иметь рисунок). Недостатками таких датчиков обычно называют: · необходимость использования специального коврика и невозможность его замены другим. Кроме всего прочего, коврики разных оптических мышей часто не были взаимозаменяемыми и не выпускались отдельно;
· необходимость определенной ориентации мыши относительно коврика, в противном случае мышь работала неправильно;
· чувствительность компьютерной мыши к загрязнению коврика (ведь он соприкасается с рукой пользователя) - датчик неуверенно воспринимал штриховку на загрязненных местах коврика;
· высокую стоимость устройства.
2.3 Оптические мыши второго поколения
Второе поколение оптических компьютерных мышей имеет более сложное устройство. В нижней части мыши установлен специальный светодиод, который подсвечивает поверхность, по которой перемещается мышь. Миниатюрная камера «фотографирует» поверхность более тысячи раз в секунду, передавая эти данные процессору, который и делает выводы об изменении координат.
Оптические мыши второго поколения имеют огромное преимущество перед первым: они не требуют специального коврика и работают практически на любых поверхностях, кроме зеркальных. Они также не нуждаются в чистке. Предполагалось, что такие мыши будут работать на произвольной поверхности, однако вскоре выяснилось, что многие продаваемые модели (в особенности первые широко продаваемые устройства) не так уж и безразличны к рисункам на коврике. На некоторых участках рисунка графический процессор способен сильно ошибаться, что приводит к хаотичным движениям указателя, не отвечавших реальному перемещению.
Для склонных к таким сбоям мышей необходимо подобрать коврик с иным рисунком или вовсе с однотонным покрытием. Также выпускаются коврики для мышей, специально ориентированные на оптические мыши. Например, коврик, имеющий на поверхности силиконовую пленку с взвесью блесток (предполагается, что оптический сенсор гораздо четче определяет перемещения по такой поверхности).
Недостатками данной мыши являются: · сложность ее одновременной работы с графическими планшетами, последние ввиду своей аппаратной особенности иногда теряют истинное направление сигнала при движении пера и начинают искажать траекторию движения инструмента при рисовании. При использовании мышей с шаровым приводом подобных отклонений не наблюдается. Для устранения данной проблемы рекомендуется использовать лазерные манипуляторы;
· Также, к недостаткам оптических мышей некоторые люди относят свечение таких мышей даже при выключенном компьютере. Поскольку большинство недорогих оптических мышей имеют полупрозрачный корпус, он пропускает красный свет светодиодов, который мешает уснуть в случае, если компьютер находится в спальне. Это происходит, если напряжение на порты PS/2 и USB подается от линии дежурного напряжения; большинство материнских плат позволяют изменить это перемычкой 5V 5VSB, но в этом случае не будет возможности включать компьютер с клавиатуры.
2.3 Оптические лазерные мыши
В последние годы была разработана новая, более совершенная разновидность оптического датчика, использующего для подсветки полупроводниковый лазер. В оптических лазерных мышах для подсветки поверхности используется лазер. Лазер, в отличие от светодиода, испускает узконаправленный пучок света, благодаря чему получаемые сенсором изображения более контрастны, а позиционирование курсора достигает высокой точности.
Оптические датчики призваны непосредственно отслеживать перемещение рабочей поверхности относительно мыши. Исключение механической составляющей обеспечивало более высокую надежность и позволяло увеличить разрешающую способность детектора. Первое поколение оптических датчиков было представлено различными схемами оптопарных датчиков с непрямой оптической связью - светоизлучающих и воспринимающих отражение от рабочей поверхности светочувствительных диодов.
Такие датчики имели одно общее свойство - они требовали наличия на рабочей поверхности (мышином коврике) специальной штриховки (перпендикулярными или ромбовидными линиями). На некоторых ковриках эти штриховки выполнялись красками, невидимыми при обычном свете (такие коврики даже могли иметь рисунок). Оптические мыши менее требовательны к рабочей поверхности, нет необходимости очищать движущиеся части устройства (они отсутствуют).
2.4 Индукционные мыши
Индукционные мыши используют специальный коврик, работающий по принципу графического планшета или собственно входят в комплект графического планшета. Некоторые планшеты имеют в своем составе манипулятор, похожий на мышь со стеклянным перекрестием, работающий по тому же принципу, однако немного отличающийся реализацией, что позволяет достичь повышенной точности позиционирования за счет увеличения диаметра чувствительной катушки и вынесения ее из устройства в зону видимости пользователя.
Индукционные мыши имеют хорошую точность, и их не нужно правильно ориентировать. Индукционная мышь может быть «беспроводной» (к компьютеру подключается планшет, на котором она работает), и иметь индукционное же питание, следовательно, не требовать аккумуляторов, как обычные беспроводные мыши.
Мышь в комплекте графического планшета позволит сэкономить немного места на столе (при условии, что на нем постоянно находится планшет). Индукционные мыши редки, дороги и не всегда удобны. Мышь для графического планшета практически невозможно поменять на другую (например, больше подходящую по руке, и т. п.).
2.5 Гироскопические мыши
Работа гироскопических мышей основывается на двуосном гироскопическом датчике, который отслеживает перемещения мыши в пространстве. Для работы таких мышей не требуется поверхность, их можно перемещать прямо в воздухе.
Подобное решение может оказаться актуальным при недостатке пространства на рабочем столе, а также во время проведения презентаций, когда курсор мыши используется в качестве указки.
3. Кнопки и другие элементы управления компьютерной мыши
3.1 Кнопки
Кнопки - основные элементы управления мыши, служащие для выполнения основных манипуляций: выбора объекта (нажатиями), активного перемещения (то есть перемещения с нажатой кнопкой, для рисования или обозначения начала и конца отрезка на экране, который может трактоваться как диагональ прямоугольника, диаметр окружности, исходная и конечная точка при перемещении объекта, выделении текста и т.п.).
Количество кнопок на мыши ограничивает концепция их использования вслепую аналогично клавишам аккордной клавиатуры. Однако, в отличие от аккордной клавиатуры, которая может безболезненно использовать пять клавиш (по одной на каждый палец), мышь еще необходимо перемещать тремя (большой, безымянный и мизинец) или двумя (большой и мизинец) пальцами.
Таким образом, можно сделать две или три полноценные кнопки для использования параллельно с перемещением мыши по столу- под указательный, средний и безымянный пальцы (для трех кнопок). Крайние кнопки называют по положению-левая(под указательный палец правши), правая и средняя, для трехкнопочной мыши.
Долгое время двух и трехкнопочные концепции противостояли друг другу. Двухкнопочные мыши поначалу лидировали, так как на их стороне, кроме простоты (три кнопки проще перепутать), удобства и отсутствия излишеств, было программное обеспечение, которое едва загружало две кнопки. Но, несмотря ни на что, трехкнопочные мыши никогда не прекращали продаваться, пока противостоянию не пришел конец.
Противостояние двух- и трехкнопочных мышей закончилось после появления прокрутки экрана (скролла), новой популярной возможности. На двухкнопочной мыши появилась небольшая средняя (третья) кнопка для включения и выключения скроллинга, которая вскоре трансформировалась в колесо прокрутки, нажатие на которое работает как средняя кнопка.
Apple пришла к использованию дополнительных кнопок мыши своим путем. Изначально посчитав излишней даже вторую кнопку, до последнего времени Apple строила все свои интерфейсы под однокнопочную мышь. Однако, современные выпускаемые фирмой Apple мыши, начиная с Mighty Mouse, могут программироваться под использование от одной до четырех кнопок.
3.2 Дополнительные кнопки
Производители постоянно стараются добавить на топовые модели дополнительные кнопки, чаще всего-кнопки под большой или указательный и реже- под средний палец. Некоторые кнопки служат для внутренней настройки мыши (например, для изменения чувствительности) или двойные-тройные щелчки (для программ и игр), на другие- в драйвере и/или специальной утилитой назначаются некоторые системные функции, например: · горизонтальная прокрутка;
· двойное нажатие (double click);
· навигация в браузерах и файловых менеджерах;
· управление уровнем громкости и воспроизведением аудио- и видеоклипов;
· запуск приложений;
· и т.п.
3.3 Другие элементы управления
Большинство элементов, не являющихся кнопками, служат для прокрутки (скроллинга) контента (веб-страница, документ, список, листбокс и т. п.) в окнах приложений и других элементах интерфейса (например, полосах прокрутки). Среди них можно выделить несколько конструктивов.
3.3.1 Колеса и потенциометры
Колеса и потенциометры- диски, выступающие из корпуса, доступные для вращения. Потенциометры, в отличие от колес, имеют крайние положения.
Наличие одного колеса между кнопками (или «скролла»; для вертикальной прокрутки) на сегодняшний день является стандартом де-факто. Такое колесо может отсутствовать у концептуальных моделей, имеющих для прокрутки иные конструктивы.
Также колеса и потенциометры могут быть использованы для регулировки, например, громкости.
3.3.2 Мини джойстик
Мини джойстик- рычаг с двумя кнопками, исключающее одновременное нажатие обеих кнопок (или сдвоенное под прямым углом плечо, ориентированное в четырех основных направлениях). Плечо может иметь центральный рычажок или, наоборот, центральное углубление (аналогично джойстикам игровых пультов). Изредка встречаются мини джойстики с потенциометром.
Кроме вертикальной и горизонтальной прокрутки, джойстики мыши могут быть использованы для альтернативного перемещения указателя или регулировок, аналогично колесам.
3.3.3 Трекболы
Трекбол-шарик, вращающийся в любом направлении. Движения шарика снимаются механическим (как в механической мыши) или оптическим способом (применяемым в современных трекболах).Трекбол можно рассматривать как двухмерное колесо прокрутки. Аналогично джойстику, трекбол может быть использован для альтернативного перемещения указателя.
Трекболы обычно используются специалистами, такими, как звукооператорами и другими, так как чтобы вращать шарик пальцами, нужно достаточно долго привыкать.
Однако, трекбол обеспечивает более точное позиционирование курсора, чем мыши. В настоящее время почти не используется.
3.3.4 Сенсорные полоски и панели
Сенсорные полоски и панели(тачпад)-элементы, определяющие перемещение пальца по поверхности. Полоски определяют движение в одном измерении (как колеса), панели-в двух (как трекболы).
Сенсорные полоски и панели выполняют те же функции что колеса с трекболами, но не имеют движущихся частей.
3.3.5 Гибридные элементы управления
Гибридные элементы управления объединяют в себе несколько принципов.
Колеса, джойстики и трекболы могут включать в себя кнопку, срабатывающую при прямом нажатии на элемент управления. Так, стандартное колесо прокрутки одновременно является средней кнопкой мыши.
Колесо может иметь элементы джойстика- свободу наклона по оси вращения. Таково качающееся колесо прокрутки (наклон колеса служит для горизонтальной прокрутки), оно одновременно является колесом, джойстиком и кнопкой.
3.3.6 Интерфейсы подключения
Самые первые мыши (шарикового типа) не имели внутри себя ничего кроме датчиков и кнопок, и подключались к компьютеру с помощью своего адаптера (шинные мыши англ.bus mouse) с шиной ISA, в котором и обрабатывались сигналы с датчиков.
Позднее, с развитием миниатюризации электронных компонентов, мыши стали подключаться к компьютерам x86 через последовательный коммуникационный интерфейс RS-232(последовательные мыши) с разъемом DB25F и, позднее, DB9F. В 1990-х годах большинство выпускавшихся мышей уже имели последовательное подключение. Последовательная мышь питалась от линии DTR («готовность компьютера») разъема RS-232.
В компьютере PS/2 фирма IBM предусмотрела для мыши специальный порт с разъемом mini-DIN, точно таким же, как и для клавиатуры. Позднее разъемы клавиатуры и мыши типа PS/2 были включены в современный стандарт материнских плат x86-ATX.
Такие мыши лидировали в продаже в период 2001-2007 гг. и используются до сих пор, постепенно уступая свои позиции интерфейсу USB. Изза особенностей аппаратной части IBM-совместимых компьютеров, интерфейс PS/2 мышей деактивировался при загрузке, если мышь не была подключена, и при загруженном компьютере включать ее в разъем было бесполезно, однако такие мыши не нагружали центральный процессор компьютера и работали более плавно в ранних вариантах компьютеров с шиной USB.
Первоначально мышки PS/2 и RS-232 имели преимущество в виде возможности передавать отсчеты в компьютер с более высокой частотой- частота опроса первых USB мышей ограничивалась частотой фреймов шины USB 1.1 (1 КГЦ).
Выпускается множество мышек с «беспроводным» интерфейсом. Чаще всего они построены на специализированном радиоканале, однако все большую популярность приобретают беспроводные мышки с универсальным беспроводным радиоинтерфейсом Bluetooth.
Основная часть современных мышей имеет интерфейс USB, иногда- с адаптером для PS/2. Фирма Apple для своих компьютеров в настоящее время поставляет мыши только с интерфейсом Bluetooth, хотя возможно использование и мышей USB.
3.3.7 Беспроводные мыши
Сигнальный провод мыши иногда рассматривается как мешающий и ограничивающий фактор.
Этого фактора лишены беспроводные мыши. Однако беспроводные мыши имеют серьезную проблему- вместе с сигнальным кабелем они теряют стационарное питание и вынуждены иметь автономное, от аккумуляторов или батарей, которые требуют подзарядки или замены, а также увеличивают вес устройства.
Аккумуляторы беспроводной мыши могут подзаряжаться как вне мыши, так и внутри нее (точно так же, как аккумуляторы в мобильных телефонах). В последнем случае, мышь должна периодически подсоединяться к стационарному питанию через кабель, док-станцию или площадку для индукционного питания.
3.3.8 Оптическое соединение
Первыми попытками было внедрение инфракрасной связи между мышью и специальным приемным устройством, которое, в свою очередь, подключалось к порту компьютера.
Оптическая связь на практике проявила крупный недостаток: любое препятствие между мышью и датчиком мешало работе.
3.3.9 Радиосвязь
Радиосвязь между мышью и приемным устройством, подключенным к компьютеру, позволила избавиться от недостатков инфракрасной связи и вытеснила ее.
Можно выделить три поколения беспроводных мышей.
Первое поколение использовало частотные диапазоны, предназначенные для радиоуправляемых игрушек (27 МГЦ).
Они имели низкую частоту опроса (типично 20-50 Гц), неустойчивую связь, взаимное влияние при близком расположении.
Такие мышки имели курьезную проблему: поскольку радиус действия этих мышей составлял несколько метров, а организации, как правило, закупали однотипную технику партиями, бывали случаи, когда курсором на экране компьютера управляла мышь, расположенная даже на соседнем этаже.
Такие мыши, как правило, имеют переключатель, позволяющий выбрать один из двух радиочастотных каналов, в большинстве случаев переход на другой канал снимал проблемы.
В настоящее время мышки первого поколения уже не производятся.
Второе поколение радиомышей использовало свободный частотный диапазон 2,45 ГГЦ и строилось на базе высокоинтегрированных скоростных радиоканалов. В таких решениях удалось полностью избавиться от «детских болезней» первого поколения.
Основным недостатком считается необходимость в специальном USB-донгле, в котором находится приемник мышки. Такой донгл занимает USB-слот на компьютере.
Потеря донгла делает мышку мертвым железом изза несовместимости методов радиосвязи разных производителей. Мышки второго поколения - наиболее массовые в настоящее время.
Третье поколение радиомышек использует стандартные радиоинтерфейсы. Как правило, это Bluetooth или (гораздо реже) другие стандартные радиоинтерфейсы персональных сетей. Мышки с Bluetooth не нуждаются в специальном донгле, так как современные компьютеры оснащаются этим интерфейсом.
Другое достоинство Bluetooth мышек- не требуется специальных драйверов. Недостаток Bluetooth- высокая цена и большее энергопотребление.
3.3.10 Индукционные мыши
Индукционные мыши чаще всего имеют индукционное питание от специальной рабочей площадки («коврика») или графического планшета. Но такие мыши являются беспроводными лишь отчасти - планшет или площадка все равно подключаются кабелем.
Таким образом, кабель не мешает двигать мышью, но и не позволяет работать на расстоянии от компьютера, как с обычной беспроводной мышью. компьютерный оптический мышь манипулятор
Список литературы
1.Информатика и компьютеры, М.: Аст, 1998. - 269 с.
2.Ахметов К. С.,Борзенко А.Е. Современный персональный компьютер. - М.: ТОО фирма «Компьютер-Пресс», 2003. - 317 с.
4. Современный самоучитель профессиональной работы на компьютере: Практ. пособие // Грошей С. В., Коцюбинский А. О., Комягин В. Б. М.: ТРИУМФ, 1998.-. 448 с.
5. Евсеев Г.А., Пацюк С.Н., Симонович С.В. Вы купили компьютер: Полное руководство для начинающих в вопросах и ответах. - М.: АСТ-ПРЕСС: Инфорком-Пресс, 2002. - 464 с.
Размещено на .ru
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы