Изучение режима поперечного излучения диэлектрической антенны вытекающей волны на основе численного моделирования. Пути устранения дифракции Брэгга. Зависимость КПД апертуры от числа элементов дифракции. Оптимизация взаимного расположения подрешеток.
При низкой оригинальности работы "Исследование диэлектрической антенны вытекающей волны на подрешетках в режиме поперечного излучения", Вы можете повысить уникальность этой работы до 80-100%
ПДВ возбуждается в торец волной, вектор напряженности электрического поля (Е) которой расположен в плоскости апертуры перпендикулярно продольной оси ПДВ. Механизм работы ДАВВ основан на известном явлении трансформации замедленной (линией передачи) поверхностной волны в вытекающую (излучаемую) волну посредством дифракционной решетки (ДР) с шагом, соизмеримым с длиной излучаемой волны l [2]. Это и неравномерное амплитудное распределение поля по апертуре, определяющее невысокую эффективную площадь раскрыва, недостаточно малый уровень бокового излучения, характерные для неоптимизированной конструкции, и которые могут быть скорректированы лишь на основе оптимизации [5-7]. В ней апертура рассмотрена как двумерная (ширина неограниченна), возбуждается поверхностной волной с единственной Е-компонентой и представляет собой ПДВ (толщиной t с относительной диэлектрической проницаемостью e) на идеально проводящем основании с нанесенной на его поверхности ДР из N проводников малого радиуса (r << l) (рис. По найденным токам в элементах ДР рассчитывается ДН в Н-плоскости - F2(j), а на ее основе - отношение мощностей вытекающей и поверхностной волн (КПД, h), коэффициенты отражения от ДР (k2отр) и прохождения к периферии ДР (k2пр) поверхностной волны, коэффициент использования площади (длины) апертуры (КИП, n) ДАВВ и др.
Список литературы
1. Останков А.В. Ретроспективный анализ возможностей, конструкций и основных характеристик дифракционных антенн вытекающей волны // Вестник Воронежского государственного технического университета. 2010. Т. 6. № 8. С. 75-81.
2. Шестопалов В.П. Физические основы миллиметровой и субмиллиметровой техники. Т. 1. Открытые структуры. Киев: Наукова думка, 1985. 216 с.
3. Евдокимов А.П. Антенны дифракционного излучения // Физические основы приборостроения. 2013. Т. 2. № 1. С. 108-124.
4. Плоская измерительная антенна СВЧ диапазона волн с электронным управлением поляризации излучения / К.Б. Меркулов, А.В. Останков, Ю.Г. Пастернак и др. // Приборы и техника эксперимента. 2003. Т. 46. № 3. С. 162-163.
5. Останков А.В. Анализ и оптимизация дифракционной антенны поверхностной волны // Антенны. 2010. № 9 (160). С. 44-53.
6. Останков А.В. Синтез излучающего гребенчатого раскрыва антенны вытекающей волны // Радиотехника. 2012. № 2. С. 38-44.
7. Останков А.В., Калинин Ю.Е., Сахаров Ю.С. Оптимизация распределительно-излучающей системы дифракционной антенны по критерию минимума угловой дисперсии в полосе частот // Вестник Воронежского государственного технического университета. 2013. Т. 9. № 6-3. С. 30-32.
8. Климов А.И. Разработка и исследование плоских дифракционных антенн СВЧ и КВЧ диапазонов с электрически управляемыми характеристиками. Воронеж: Научная книга, 2010. 118 с.
9. Останков А.В., Калинин Ю.Е. Расчет частотно-сканирующей антенны дифракционного излучения // Радиотехника. 2014. № 3. С. 83-87.
10. Останков А.В., Степанов А.Е. Методика расчета частотно-сканирующей антенны вытекающей волны дифракционного типа // Вестник Воронежского государственного технического университета. 2012. Т. 8. № 7-1. С. 133-139.
11. Останков А.В. Дифракционная антенна вытекающей волны с нестандартной реализацией излучающего раскрыва // Вестник Воронежского государственного технического университета. 2010. Т. 6. № 8. С. 17-26.
14. Калиничев В.И., Куранов Ю.В. Дифракция поверхностных волн на решетке металлических стержней и анализ диэлектрической антенны вытекающей волны // Радиотехника и электроника. 1991. Т. 36. № 10. С. 1902-1909.
15. Чередниченко В.Ф. Расчет оптимального шага дифракционной решетки в составе излучающего раскрыва антенны вытекающей волны миллиметрового диапазона [Электрон. ресурс] // Современные научные исследования и инновации. 2014. № 7 (39). URL: http://web.snauka.ru/issues/2014/07/36583.
16. Чередниченко В.Ф. Оптимизация на основе математического моделирования характеристик диэлектрической антенны вытекающей волны // Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. 2014. № 7-8. С. 7-11.
17. Останков А.В. Оптимизация антенны дифракционного излучения, реализованной по интерферометрической схеме // Вестник Воронежского государственного технического университета. 2010. Т. 6. № 11. С. 51-54.
18. Останков А.В., Антипов С.А., Сахаров Ю.С. Минимаксный уровень бокового излучения равноамплитудной неэквидистантной антенной решетки // Вестник Воронежского государственного технического университета. 2013. Т. 9. № 6-3. С. 10-12.
19. Останков А.В., Кирпичева И.А. Расчет параметров решетки из проводящих лент на экранированном диэлектрическом волноводе для антенны дифракционного излучения // Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. 2015. № 1-2. С. 3-10.
Размещено на .ru
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы