Исследование алгоритмов обнаружения и распознавания дорожных знаков - Статья

бесплатно 0
4.5 128
Сущность и значение алгоритмов распознавания дорожных знаков. Характеристика возможных алгоритмов предварительной обработки изображения, предназначенных для получения более качественных границ объектов. Этапы предварительной обработки изображения.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Большинство систем для поиска и идентификации объектов на изображении требуют огромных вычислительных мощностей, а в случае мобильных устройств постоянная работа камеры и высокая нагрузка на процессор создает проблему больших затрат энергии. Одним из главных препятствий в решении задачи распознавания является качество снимков, отсюда возникает необходимость предварительной обработки изображений[2,5]. После определения границ цвета требуется анализировать изображение попиксельно, а затем проводить бинаризацию. Под бинаризацией подразумевается, что цвет каждого пикселя имеющего значение цветового тона в пределах искомого цвета делаем белым, остальные пиксели делаем черными (Рис.1). а) б) Рис.1 Этапы предварительной обработки изображения: а) Изображение полученное с видеорегистратора б) Выделение красного цвета и бинаризацияВ данной статье была рассмотрена многоэтапная модель распознавания объектов, в основе которой метод сравнения моментов.

Введение
Большинство систем для поиска и идентификации объектов на изображении требуют огромных вычислительных мощностей, а в случае мобильных устройств постоянная работа камеры и высокая нагрузка на процессор создает проблему больших затрат энергии. Потребление больших вычислительных мощностей обусловлено необходимостью предварительной обработки получаемых на вход изображений. Для решения проблемы обнаружения и идентификации объектов создано множество алгоритмов, позволяющих проектировать более производительное программное обеспечение[3].

Исходя из описанного выше можно в общем виде построить алгоритм для обнаружения и идентификации объектов: 1. Предварительная обработка изображения;

2. Поиск объекта (для нашей задачи это будет окружность, прямоугольник или треугольник);

3. Распознавание объекта.

Предварительная обработка изображения

Одним из главных препятствий в решении задачи распознавания является качество снимков, отсюда возникает необходимость предварительной обработки изображений[2,5]. Так как для дорожных знаков при изготовлении используется строго определенный набор цветов, для предварительной обработки изображений можно использовать выделение цветов геометрических примитивов [1].

Для задачи поиска цвета наиболее удобным решением является перевод изображения в цветовую модель HSV, которая предполагает более четкое разграничение цветов. Для перевода к данной цветовой модели из цветового пространства RGB необходимо воспользоваться (1):

где H [0,360]; S,V,R,G,B [0,1], а МАХ - максимальное из значений R,G,B, MIN - минимальное.

Для данной цветовой модели важной компонентой в рамках поставленной задачи будет цветовой тон Н, остальные компоненты следует выбирать максимальными так как они зависят от окружения [7].

После определения границ цвета требуется анализировать изображение попиксельно, а затем проводить бинаризацию. Под бинаризацией подразумевается, что цвет каждого пикселя имеющего значение цветового тона в пределах искомого цвета делаем белым, остальные пиксели делаем черными (Рис.1).

а) б)

Рис.1 Этапы предварительной обработки изображения: а) Изображение полученное с видеорегистратора б) Выделение красного цвета и бинаризация

Следующим этапом в предварительной обработке является сглаживание. В качестве фильтра выбран матричный фильтр размерности 3х3 (2): (2)

В процессе применения фильтра компоненты изображения перемножаются на коэффициенты матрицы, а затем складываются. Затем полученные компоненты делятся на размерность матрицы фильтра, после чего получаем компоненты RGB, которые присваиваются пикселям после применения к ним матричного фильтра.

Результат применения фильтра (2) к рис. 1 можно увидеть на рис. 2.

Рис.2 Применение фильтра сглаживания.

Поиск объекта

Для поиска объекта требуется выделить границы искомого объекта. Для этой цели хорошо подходит детектор Кенни [4]. Реализация данного детектора присутствует в библиотеке OPENCV. В основе его работы лежит градиентный оператор Собеля. Различные программные реализации позволяют указать пороги минимума, максимума и размерность оператора Соболя при вызове метода. Маски, используемые оператором Собеля [8], представлены на рис.3.

Рис.3 Маски оператора Собеля

Эффект применения оператора Собеля к рис. 2 можно увидеть на рис. 4.

Рис.4 Выделение границ с помощью оператора Собеля

Распознавание объекта дорожный знак изображение распознавание

Далее требуется распознать полученный контур. Для этого можно использовать сравнение моментов. Чтобы использовать данный подход необходимо иметь образец фигуры, в результате обработки которой будет найден нужный контур. Сравнение моментов контуров реализуется с помощью составления карты контуров и последующего сопоставления знака с помощью преобразования Фурье. Для данного метода возможно три варианта сравнения, использующие инвариантные моменты, являющиеся линейной комбинацией нормализованных центральных моментов[9]. Выражение вида (3) является двумерным моментом порядка (p q) [6].

(3) где D-область изображения, для которой вычисляются моменты. Для описания изображения совместная вероятность p(x, y) заменяется на функцию яркости изображения f(x,y). Переход к центральным моментам обеспечивает инвариантность двумерных моментов к сдвигу [6]. После преобразований получим выражение (4)

(4) где - координаты центра области D.

Переход к нормализованным центральным моментам обеспечивает инвариантность относительно масштабирования.

В качестве меры сходства изображений возможен выбор между тремя функциями (5)

, , , (5) где , , а - моменты Hu изображений A и B соответственно.

Вывод
В данной статье была рассмотрена многоэтапная модель распознавания объектов, в основе которой метод сравнения моментов. Данная модель обеспечивает хорошую производительность для задачи нахождения однотипных объектов. В случае, если изображение подается затемненным или с бликами, тогда требуется его дальнейшее улучшение [9]. Так же для более гибкого распознавания можно использовать методы машинного обучения. Одним из таких методов является каскадный классификатор на основе признаков Хаара, который в свою очередь использует метод Виолы-Джонса [10].

Список литературы
1. Гришанов К.М., Белов Ю.С. Методы выделения признаков для распознавания символов. Электронный журнал: наука, техника и образование, 2016, вып. 1(5), стр. 110-119.

2. Нестеров А.Ю., Белов Ю.С. Распознавание образов по уникальным точкам на примере дорожных знаков. Электронный журнал: наука, техника и образование. 2016. № 4 (9). С. 113-119.

3. Нестеров А.Ю., Белов Ю.С. Сравнительный анализ функционирования алгоритма распознавания по контрольным точкам и результатов работы мобильного приложения roadar. Электронный журнал: наука, техника и образование. 2017. № СВ1 (11). С. 139-145

4. Сакович И.О., Белов Ю.С. Обзор основных методов контурного анализа для выделения контуров движущихся объектов. Инженерный журнал: наука и инновации. 2014. № 12 (36). С. 11.

5. Коваль Ю.А., Филиппов М.В. Метод предварительной фильтрации изображений для повышения точности распознавания образов. Инженерный журнал: наука и инновации, 2014, вып. 12. URL: http://engjournal.ru/catalog/it/hidden/1307.html (дата обращения: 22.12.2017).

6. Borgefors G Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(6):849-865, 2000.

7. Chan T.F., Vese L.A. Active contours without edges. IEEE Transactions on Image Processing, 10(2):266-277. февраль 2001.

8. Lin Weisi,Dacheng Tao Multimedia Analysis, Processing and Communications, 2011, pp. 200-205.

9. M.K.Hu. Visual Pattern Recognition by Moment Invariants. IRE Trans. Info. Theory. vol. IT-8:179-187, 2000.

10. Viola P., Jones M. Rapid object detection using a boosted cascade of simple features. Accepted Conference On Computer Vision And Pattern Recognition, 2001, vol. 1, pp. 511-518.

Размещено на .ru

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?