Интерполяционная формула Стирлинга - Курсовая работа

бесплатно 0
4.5 66
Основополагающее значение задачи интерполяции. Основные методы решения задач численного дифференцирования, интегрирования, решения дифференциальных и интегральных уравнений. Классификация методов приближения. Критерии качества оценки погрешности.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Для получения достаточно точных результатов при значениях аргументов, расположенных между узловыми точками, для которых даны табличные значения функции, решалась задача интерполяции (в переводе - «между полюсами»). В наиболее простом случае соседние точки графика этой функции соединялись отрезком прямой (линейная интерполяция). Например, выражение «четырехзначные таблицы» означает, что для любого значения аргумента, а не только для указанных в таблице в качестве узловых, путем интерполяции, (как правило, линейной) можно получить значение табулированной функции с точностью до четырех значащих цифр. Основополагающее значение задачи интерполяции объясняется также тем, что многие методы решения задач численного дифференцирования, интегрирования, решения дифференциальных и интегральных уравнений сводятся к дифференцированию и интегрированию интерполяционного многочлена. Однако, в отличие от задачи интерполяции известной функции, в этом случае информация об искомой функции ограничивается таблицей ее значений.Такие формулы малоформативны, они определены лишь в узлах сетки , а значение функции в промежуточных точках неизвестны, кроме того неизвестны значения производных в узлах сетки, интегралы от таких функций нельзя вычислить классическими методами. Каждая сетка называется шагом разбиения при этом говорят, что сетка является равномерной если шаг , то сетка называется равномерной и не равномерная сетка . Однако значение функции должны быть извстны при любом значении аргумента оличного от узла, а в самих узлах необходимо знать также первую и вторую производные, поэтому такие функции необходимо восполнять. Например, производная любого порядка от функций sinx и cosx по модулю не превышает единицы. Необходимо отметить, что значения между узлами xj вблизи концов интервала интерполяции существенно больше (по модулю), чем в середине.

Введение
Интерполяция функций является одним из фундаментальных разделов вычислительной математики. До появления компьютеров для многих практических вычислений применялись таблицы элементарных функций (синусов, логарифмов и т. п.). Для получения достаточно точных результатов при значениях аргументов, расположенных между узловыми точками, для которых даны табличные значения функции, решалась задача интерполяции (в переводе - «между полюсами»). В наиболее простом случае соседние точки графика этой функции соединялись отрезком прямой (линейная интерполяция). Собственно, густота точек таблицы и выбиралась в расчете на интерполяцию. Например, выражение «четырехзначные таблицы» означает, что для любого значения аргумента, а не только для указанных в таблице в качестве узловых, путем интерполяции, (как правило, линейной) можно получить значение табулированной функции с точностью до четырех значащих цифр.

Основополагающее значение задачи интерполяции объясняется также тем, что многие методы решения задач численного дифференцирования, интегрирования, решения дифференциальных и интегральных уравнений сводятся к дифференцированию и интегрированию интерполяционного многочлена.

После появления компьютеров значение задачи интерполяции функций, заданных таблично, не потеряло актуальности, поскольку в результате численного решения сложных задач получается ряд значений искомой функции при разных значениях входного параметра. Получение большого числа таких значений сопряжено с большими затратами машинного времени. Применение интерполяции в этом случае позволяет существенно уменьшить эти затраты. Однако, в отличие от задачи интерполяции известной функции, в этом случае информация об искомой функции ограничивается таблицей ее значений. Эта задача является некорректной, поскольку существует бесконечное множество функций, имеющих заданное конечное число известных значений.

С подобными же проблемами приходится сталкиваться и при решении дифференциальных и интегральных уравнений. Поэтому можно сформулировать такой тезис: в вычислительной математике не существует корректных задач. Существуют только корректно поставленные задачи, т.е. искусственно придуманные условия, которые на практике, как правило, не выполняются в связи с недостатком информации о том, что является искомым.

В связи с этим задача интерполяции в реальных условиях есть важнейшая проблема вычислительной математики, решение которой позволяет найти ключ к решению многих других задач, необходимых для практики.

Многим из тех, кто сталкивается с научными и инженерными расчетами часто приходится оперировать наборами значений, полученных экспериментальным путем или методом случайной выборки . Как правило, на основании этих наборов требуется построить функцию , на которую могли бы с высокой точностью попадать другие получаемые значения. Такая задача называется аппроксимацией. Интерполяцией называют такую разновидность аппроксимации, при которой кривая построенной функции проходит точно через имеющиеся точки данных.

Существует также близкая к интерполяции задача, которая заключается в аппроксимации какой-либо сложной функции другой, более простой функцией. Если некоторая функция слишком сложна для производительных вычислений, можно попытаться вычислить ее значение в нескольких точках, а по ним построить, то есть интерполировать, более простую функцию. Разумеется, использование упрощенной функции не позволяет получить такие же точные результаты , какие давала бы первоначальная функция. Но в некоторых классах задач достигнутый выигрыш в простоте и скорости вычислений может перевесить получаемую погрешность в результатах.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?