Основополагающее значение задачи интерполяции. Основные методы решения задач численного дифференцирования, интегрирования, решения дифференциальных и интегральных уравнений. Классификация методов приближения. Критерии качества оценки погрешности.
Для получения достаточно точных результатов при значениях аргументов, расположенных между узловыми точками, для которых даны табличные значения функции, решалась задача интерполяции (в переводе - «между полюсами»). В наиболее простом случае соседние точки графика этой функции соединялись отрезком прямой (линейная интерполяция). Например, выражение «четырехзначные таблицы» означает, что для любого значения аргумента, а не только для указанных в таблице в качестве узловых, путем интерполяции, (как правило, линейной) можно получить значение табулированной функции с точностью до четырех значащих цифр. Основополагающее значение задачи интерполяции объясняется также тем, что многие методы решения задач численного дифференцирования, интегрирования, решения дифференциальных и интегральных уравнений сводятся к дифференцированию и интегрированию интерполяционного многочлена. Однако, в отличие от задачи интерполяции известной функции, в этом случае информация об искомой функции ограничивается таблицей ее значений.Такие формулы малоформативны, они определены лишь в узлах сетки , а значение функции в промежуточных точках неизвестны, кроме того неизвестны значения производных в узлах сетки, интегралы от таких функций нельзя вычислить классическими методами. Каждая сетка называется шагом разбиения при этом говорят, что сетка является равномерной если шаг , то сетка называется равномерной и не равномерная сетка . Однако значение функции должны быть извстны при любом значении аргумента оличного от узла, а в самих узлах необходимо знать также первую и вторую производные, поэтому такие функции необходимо восполнять. Например, производная любого порядка от функций sinx и cosx по модулю не превышает единицы. Необходимо отметить, что значения между узлами xj вблизи концов интервала интерполяции существенно больше (по модулю), чем в середине.
Введение
Интерполяция функций является одним из фундаментальных разделов вычислительной математики. До появления компьютеров для многих практических вычислений применялись таблицы элементарных функций (синусов, логарифмов и т. п.). Для получения достаточно точных результатов при значениях аргументов, расположенных между узловыми точками, для которых даны табличные значения функции, решалась задача интерполяции (в переводе - «между полюсами»). В наиболее простом случае соседние точки графика этой функции соединялись отрезком прямой (линейная интерполяция). Собственно, густота точек таблицы и выбиралась в расчете на интерполяцию. Например, выражение «четырехзначные таблицы» означает, что для любого значения аргумента, а не только для указанных в таблице в качестве узловых, путем интерполяции, (как правило, линейной) можно получить значение табулированной функции с точностью до четырех значащих цифр.
Основополагающее значение задачи интерполяции объясняется также тем, что многие методы решения задач численного дифференцирования, интегрирования, решения дифференциальных и интегральных уравнений сводятся к дифференцированию и интегрированию интерполяционного многочлена.
После появления компьютеров значение задачи интерполяции функций, заданных таблично, не потеряло актуальности, поскольку в результате численного решения сложных задач получается ряд значений искомой функции при разных значениях входного параметра. Получение большого числа таких значений сопряжено с большими затратами машинного времени. Применение интерполяции в этом случае позволяет существенно уменьшить эти затраты. Однако, в отличие от задачи интерполяции известной функции, в этом случае информация об искомой функции ограничивается таблицей ее значений. Эта задача является некорректной, поскольку существует бесконечное множество функций, имеющих заданное конечное число известных значений.
С подобными же проблемами приходится сталкиваться и при решении дифференциальных и интегральных уравнений. Поэтому можно сформулировать такой тезис: в вычислительной математике не существует корректных задач. Существуют только корректно поставленные задачи, т.е. искусственно придуманные условия, которые на практике, как правило, не выполняются в связи с недостатком информации о том, что является искомым.
В связи с этим задача интерполяции в реальных условиях есть важнейшая проблема вычислительной математики, решение которой позволяет найти ключ к решению многих других задач, необходимых для практики.
Многим из тех, кто сталкивается с научными и инженерными расчетами часто приходится оперировать наборами значений, полученных экспериментальным путем или методом случайной выборки . Как правило, на основании этих наборов требуется построить функцию , на которую могли бы с высокой точностью попадать другие получаемые значения. Такая задача называется аппроксимацией. Интерполяцией называют такую разновидность аппроксимации, при которой кривая построенной функции проходит точно через имеющиеся точки данных.
Существует также близкая к интерполяции задача, которая заключается в аппроксимации какой-либо сложной функции другой, более простой функцией. Если некоторая функция слишком сложна для производительных вычислений, можно попытаться вычислить ее значение в нескольких точках, а по ним построить, то есть интерполировать, более простую функцию. Разумеется, использование упрощенной функции не позволяет получить такие же точные результаты , какие давала бы первоначальная функция. Но в некоторых классах задач достигнутый выигрыш в простоте и скорости вычислений может перевесить получаемую погрешность в результатах.
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы