Понятие первообразной функции, теорема о первообразных. Неопределенный интеграл, его свойства и таблица. Понятие определенного интеграла, его геометрический смысл и основные свойства. Производная определенного интеграла и формула Ньютона-Лейбница.
Курс математического анализа содержит разнообразный материал, однако, одним из его центральных разделов является неопределенный интеграл. Интегрирование многих видов функций подчас представляет собой одну из труднейших проблем математического анализа. Вычисление определенного интеграла имеет не только теоретический интерес. Поэтому в школе, на занятиях по математике, изучается темы «Неопределенный интеграл» и «Определенный интеграл и его приложения». Объектом исследования является неопределенный интеграл, определенный интеграл и методы его решения. По заданной функции f(x) требуется найти такую функцию F(x), что F’(х)=f(x) или dF(x)=F’(x)dx=f(x)dx. Совокупность F(x) C всех первообразных функции f(x) на множестве Х называется неопределенным интегралом и обозначается: - (1) В формуле (1) f(x)dx называется подынтегральным выражением, f(x) - подынтегральной функцией, х - переменной интегрирования, а С - постоянной интегрирования.
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы