Понятие и характеристика неопределенного интеграла, его свойства. Методы интегрирования функций: разложение, замена переменной, по частям. Задача Коши, ее содержание. Дисперсия случайной величины. Решения для дифференциальных уравнений n-порядка.
Интегралы Основные вопросы лекции: первообразная; неопределенный интеграл, его свойства; таблица интегралов; методы интегрирования: разложение, замена переменной, по частям; интегрирование рациональных функций; интегрирование иррациональностей и выражений, содержащих тригонометрические функции, задачи, приводящие к понятию определенного интеграла; интегральная сумма; понятие определенного интеграла, его свойства; определенный интеграл как функция верхнего предела; формула Ньютона Лейбница; применение определенного интеграла к вычислению площадей плоских фигур; вычисление объемов тел и длин дуг кривых; несобственные интегралы с бесконечными пределами и от неограниченных функций, основные понятия дифференциальных уравнений; задача Коши; дифференциальные уравнения с разделяющимися переменными; однородные дифференциальные уравнения 1-го порядка; линейные дифференциальные уравнения 1-го порядка, дифференциальные уравнения 2-го порядка, допускающие понижение порядка; линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами: однородные и неоднородные. Функция называется первообразной для функции на промежутке , если в любой точке этого промежутка . Теорема. Если и - первообразные для функции на некотором промежутке , то найдется такое число , что будет справедливо равенство = . Дифференциальным уравнением называется уравнение, связывающее искомую функцию одной или нескольких переменных, эти переменные и производные различных порядков данной функции.
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы