Имитационное моделирование - Курсовая работа

бесплатно 0
4.5 51
Анализ особенностей имитационного моделирования воспроизводственных процессов в нефтегазовой промышленности. Этапы процесса построения математической модели сложной системы. Рассмотрение метода Монте-Карло как разновидности имитационного моделирования.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Как и любое компьютерное моделирование, оно дает возможность проводить вычислительные эксперименты с еще только проектируемыми системами и изучать системы, натурные эксперименты с которыми, изза соображений безопасности или дороговизны, не целесообразны. Имитационное моделирование применяется к процессам, в ход которых может время от времени вмешиваться человеческая воля. Человек, руководящий операцией, может в зависимости от сложившейся обстановки, принимать те или другие решения, подобно тому, как шахматист, глядя на доску, выбирает свой очередной ход. Затем приводится в действие математическая модель, которая показывает, какое ожидается изменение обстановки в ответ на это решение и к каким последствиям оно приведет спустя некоторое время . Имитационное моделированием применяется к процессам, в ход которых может время от времени вмешиваться человеческая воля.В нефтегазовой промышленности производство отличается длительными сроками, эшелонированием производственно - технологического процесса во времени (поиски и разведка, разработка и обустройство, добыча нефти, газа и конденсата), наличием лаговых смещений и запаздываний, динамичностью используемых ресурсов и другими факторами, значения многих из которых носят вероятностный характер. Суть этих методов заключается в многократном воспроизводстве вариантов плановых решений с последующим анализом и выбором наиболее рационального из них по установленной системе критериев. Датой рождения метода Монте-Карло принято считать 1949 г., когда появилась статья под названием «The Monte Carlo method». Вместо того, чтобы описывать процесс с помощью аналитического аппарата (дифференциальных или алгебраических уравнений), производится «розыгрыш» случайного явления с помощью специально организованной процедуры, включающей в себя случайность и дающей случайный результат. При моделировании случайных явлений методом Монте-Карло мы пользуемся самой случайностью как аппаратом исследования, заставляем ее «работать на нас».Программная реализация виртуального стенда скрыта от пользователя. Для проведения экспериментов не требуется никаких особых знаний о компьютере, операционной системе и математическом обеспечении. Таким образом, прогресс средств автоматизации моделирования приводит нас на следующем витке спирали развития к истокам вычислительной техники. Огромное число реализации, необходимое для нахождения искомых параметров с приемлемой точностью, требует большого расхода машинного времени.

План
Содержание

Введение

1. Определение понятия «имитационное моделирование»

2. Имитационное моделирование воспроизводственных процессов в нефтегазовой промышленности

3. Метод Монте-Карло как разновидность имитационного моделирования

Задача 1

Заключение

Список использованной литературы моделирование нефтегазовый промышленность

Введение
Имитационное моделирование на цифровых вычислительных машинах является одним из наиболее мощных средств исследования, в частности, сложных динамических систем. Как и любое компьютерное моделирование, оно дает возможность проводить вычислительные эксперименты с еще только проектируемыми системами и изучать системы, натурные эксперименты с которыми, изза соображений безопасности или дороговизны, не целесообразны. В тоже время, благодаря своей близости по форме к физическому моделированию, это метод исследования доступен более широкому кругу пользователей.

В изучении операций широко применяются как аналитические, так и статистические модели. Каждый из этих типов имеет свои преимущества и недостатки. Аналитические модели более грубы, учитывают меньшее число факторов, всегда требуют каких-то допущений и упрощений. Зато результаты расчета по ним легче обозримы, отчетливее отражают присущие явлению основные закономерности. Статистические модели, по сравнению, с аналитическими, более точны и подробны, не требуют столь грубых допущений, позволяют учесть большое (в теории - неограниченно большое) число факторов. Но и у них - свои недостатки: громоздкость, плохая обозримость, большой расход машинного времени, а главное, крайняя трудность поиска оптимальных решений, которые приходятся искать.

Наилучшие работы в области изучении операций основаны на совместном применении аналитических и статистических моделей. Аналитическая модель дает возможность в общих чертах разобраться в явлении, наметить как бы контур основных закономерностей. Любые уточнения могут быть получены моделями. Имитационное моделирование применяется к процессам, в ход которых может время от времени вмешиваться человеческая воля. Человек, руководящий операцией, может в зависимости от сложившейся обстановки, принимать те или другие решения, подобно тому, как шахматист, глядя на доску, выбирает свой очередной ход. Затем приводится в действие математическая модель, которая показывает, какое ожидается изменение обстановки в ответ на это решение и к каким последствиям оно приведет спустя некоторое время . Следующее «текущее решение» принимается уже с учетом реальной новой обстановки и т.д. В результате многократного повторения такой процедуры руководитель как бы «набирает опыт», учится на своих и чужих ошибках и постепенно выучивается принимать правильные решения - если не оптимальные, то почти оптимальные.

1. Определение понятия «имитационное моделирование»

В современной литературе не существует единой точки зрения по вопросу о том, что понимать под имитационным моделированием. Так существуют различные трактовки: в первой - под имитационной моделью понимается математическая модель в классическом смысле;

во второй - этот термин сохраняется лишь за теми моделями, в которых тем или иным способом разыгрываются (имитируются) случайные воздействия;

в третьей - предполагают, что имитационная модель отличается от обычной математической более детальным описанием , но критерий, по которому можно сказать, когда кончается математическая модель и начинается имитационная , не вводится;

Имитационное моделированием применяется к процессам, в ход которых может время от времени вмешиваться человеческая воля. Человек, руководящий операцией, может в зависимости от сложившейся обстановки, принимать те или иные решения, подобно тому, как шахматист глядя на доску, выбирает свой очередной ход. Затем приводится в действие математическая модель, которая показывает, какое ожидается изменение обстановки, в ответ на это решение и к каким последствиям оно приведет спустя некоторое время. Следующее текущее решение принимается уже с учетом реальной новой обстановки и т. д. В результате многократного повторения такой процедуры руководитель как бы «набирает опыт», учится на своих и чужих ошибках и постепенно выучиваться принимать правильные решения - если не оптимальные, то почти оптимальные.

Попробуем проиллюстрировать процесс имитационного моделирования через сравнение с классической математической моделью.

Этапы процесса построения математической модели сложной системы: 1. Формулируются основные вопросы о поведении системы, ответы на которые мы хотим получить с помощью модели.

Из множества законов, управляющих поведением системы, выбираются те, влияние которых существенно при поиске ответов на поставленные вопросы.

В пополнение к этим законам, если необходимо, для системы в целом или отдельных ее частей формулируются определенные гипотезы о функционировании.

Критерием адекватности модели служит практика.

Трудности при построении математической модели сложной системы: Если модель содержит много связей между элементами, разнообразные нелинейные ограничения, большое число параметров и т. д.

Реальные системы зачастую подвержены влиянию случайных различных факторов, учет которых аналитическим путем представляет весьма большие трудности, зачастую непреодолимые при большом их числе;

Возможность сопоставления модели и оригинала при таком подходе имеется лишь в начале.

Эти трудности и обуславливают применение имитационного моделирования.

Оно реализуется по следующим этапам: Как и ранее, формулируются основные вопросы о поведении сложной системы, ответы на которые мы хотим получить.

Осуществляется декомпозиция системы на более простые части-блоки.

Формулируются законы и «правдоподобные» гипотезы относительно поведения как системы в целом, так и отдельных ее частей.

В зависимости от поставленных перед исследователем вопросов вводится так называемое системное время, моделирующее ход времени в реальной системе.

Формализованным образом задаются необходимые феноменологические свойства системы и отдельных ее частей.

Случайным параметрам, фигурирующим в модели, сопоставляются некоторые их реализации, сохраняющиеся постоянными в течение одного или нескольких тактов системного времени. Далее отыскиваются новые реализации.

Вывод
Программная реализация виртуального стенда скрыта от пользователя. Для проведения экспериментов не требуется никаких особых знаний о компьютере, операционной системе и математическом обеспечении. Можно сказать, что виртуальный стенд превращает цифровую вычислительную машину в невиданно точную и удобную аналоговую. Таким образом, прогресс средств автоматизации моделирования приводит нас на следующем витке спирали развития к истокам вычислительной техники.

Главный недостаток статистических моделей - их громоздкость и трудоемкость. Огромное число реализации, необходимое для нахождения искомых параметров с приемлемой точностью, требует большого расхода машинного времени. Кроме того, результаты статистического моделирования гораздо труднее осмыслить, чем расчеты по аналитическим моделям, и соответственно труднее оптимизировать решение (его приходится «нащупывать» вслепую). Правильное сочетание аналитических и статистических методов в исследовании операций - дело искусства, чутья и опыта исследователя. Нередко аналитическими методами удается описать какие-то «подсистемы», выделяемые в большой системе, а затем из таких моделей, как из «кирпичиков», строить здание большой, сложной модели.

Основным недостатком аналитических моделей является то, что они неизбежно требуют каких-то допущений, в частности, о «марковости» процесса. Приемлемость этих допущений далеко не всегда может быть оценена без контрольных расчетов, а производятся они методом Монте-Карло. Образно говоря, метод Монте-Карло в задачах исследования операций играет роль своеобразного ОТК. Статистические модели не требуют серьезных допущений и упрощений. В принципе, в статистическую модель «лезет» что угодно - любые законы распределения, любая сложность системы, множественность ее состояний.

Список литературы
1. Вентцель Е.С. «Исследование операций», Москва «Советское радио» 1972 г.

2. Соболь И.М. «Метод Монте-Карло», Москва «Наука»,1985 г.

3. «Экономико-математические методы и прикладные модели», под ред. Федосеева В.В. , Москва «Юнити» 2001 г.

4. Бусленко В. Н. Автоматизация имитационного моделирования сложных систем. - М,: Наука, 1987. - 238 с.

5. Попов Е. П. теория автоматического регулирования и управления: Учеб. Пособие для втузов. - 4-е изд., перераб. и доп. - М.: наука. Гл. ред. физ.-мат. лит., 1993. - 304с.

Размещено на .ru

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?