Gravitational waves and quantum theory - Статья

бесплатно 0
4.5 38
The formulation of a metric model that satisfies the requirements of quantum theory. Description of gravitational waves by the Liouville equation. Proof of the Schrodinger conjecture on the connection between the wave function and gravitational waves.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
UDC 514.84 Gravitational waves and quantum theory Alexander Trunev Cand.Phys.-Math.Sci., Ph.D. Director, A&E Trounev IT Consulting, Toronto, Canada Abstract In this article we consider gravitation theory in multidimensional space. The model of the metric satisfying the basic requirements of quantum theory is proposed. It is shown that gravitational waves are described by the Liouville equation. Schrodinger conjecture about the Schrodinger wave function and gravitational waves has been proved Keywords: GENERAL RELATIVITY, GRAVITATIONAL WAVES, BLACK ENERGY, BLACK MATTER, STRING-THEORY Аннотация УДК 514.84 Гравитационные волны и квантовая теория Трунев Александр Петрович, к.ф.-м.н., Ph.D. Директор, A&E Trounev IT Consulting, Торонто, Канада В работе рассмотрена теория гравитации в многомерных пространствах. In paper [8] we presented model of quantum gravity in space of dimension with metric (4) Here - angles on the unit sphere, immersed in space. Metric (4) describes many important cases of symmetry used in elementary particle physics and the theory of Supergravity [13-15]. This approach allows capturing the diversity of matter, which produces factory of nature, by choosing the equation of state . In this paper, the metric (4) and model (3) used to justify the Schrodinger hypothesis [16] on the relationship of gravitational waves with the wave function of quantum mechanics. metric quantum gravitational liouville Supergravity and the motion of matter Consider gravity in space with the metric (4). Einsteins equation in the form (3) is universal, so it can be generalized to any Riemann space. We will describe the motion of matter by Hamilton-Jacobi equation, which also can be generalized to any Riemann space. Together, these two equations constitute a universal model describing the motion of matter in -space: (5) (6) The field equations in the metric (4) are reduced to one second-order equation [8] (7) In general, the parameters of the model and the scalar curvature depends only on the space dimension, we have (8) Note that equation (7) changes its type depending on the sign of the derivative : For equation (7) is of elliptic type; For equation (7) is of hyperbolic type; For equation (7) has a parabolic type.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?