Классификация глины, номенклатура и текстуры, атомная структура, состав и группы глинистых минералов. Элементы, составляющие глину, их синтез. Гидротермальное образование, выветривание и почвы. Глинистые минералы как индикаторы условий осадконакопления.
Большинство этих пород представляет собой смесь двух кластических силикатных материалов - горную муку и глину. Собственно глины состоят из тончайших чешуйчатых кристаллов минералов, образующихся при выветривании полевых шпатов и других разрушающихся минералов. Помимо глинистых минералов в глинах в качестве акцессорных компонентов в различных количествах обычно присутствуют хемогенные образования (сидерит, кальцит), органические вещества и разнообразные коллоиды. Если один из минералов преобладает, глины называют по этому минералу - каолинитовая, галлуазитовая и т.д. Однако слово «глина» обозначает также и продукты выветривания, или, сами глинистые минералы, материал вулканической и гидротермальной природы, поэтому, когда нужно указать, что речь идет о породе, следует говорить «аргиллит».
План
Содержание
Введение
Классификация глин
Номенклатура глинистых пород
Структуры и текстуры глинистых пород
Атомная структура, состав и группы глинистых минералов
Элементы, составляющие глины
Синтез
Гидротермальное образование
Выветривание и почвы
Бентониты
Современные осадки
Глинистые минералы - индикаторы условий осадконакопления
Метаморфизм глинистых пород
Месторождения
Заключение
Список литературы
Введение
Глинистые породы - уплотненные (связные) скопления мельчайших частиц разрушенных пород (“породной муки”), состоящие преимущественно из глинистых минералов.
Минералы глин представлены тонкими минеральными частичками слоистых силикатов (менее 0,05мм в поперечнике) обычно чешуйчатого габитуса с весьма совершенной спайностью. Образуются они при разложении силикатных минералов. Наиболее известные из минералов глин -снежно-белый каолинит и монтмориллонит. Также сюда относятся монотермит, галлуазит, гидрослюды, иногда палыгорскит.
Хотя в глинистых породах частицы в основной массе имеют размер менее 0,004 мм, обычно в них присутствует достаточное количество частиц алевритовой размерности. Большинство этих пород представляет собой смесь двух кластических силикатных материалов - горную муку и глину. Многие ледниковые глины и эоловые пылевые накопления сложены в основном частицами кварца, полевого шпата и слюды; этот материал известен как горная мука, он почти не отличается от материала песков, за исключением размера частиц.
Собственно глины состоят из тончайших чешуйчатых кристаллов минералов, образующихся при выветривании полевых шпатов и других разрушающихся минералов. Эти породы существенно отличаются по составу и свойствам от более крупнозернистых осадков. Помимо глинистых минералов в глинах в качестве акцессорных компонентов в различных количествах обычно присутствуют хемогенные образования (сидерит, кальцит), органические вещества и разнообразные коллоиды. Очевидно, что по мере увеличения количества неглинистых минералов возрастает их роль в определении свойств глин.
Глины используются в производстве керамики, бумаги, резины, катализаторов и др. Глины весьма важны для многих областей деятельности человека, например для сельского хозяйства и инженерного дела. Для каждой области применения глин существуют специфические требования к различному сочетанию свойств.
Классификация глин
Глины классифицируют по составу, происхождению, окраске, по их практичному использованию. Если один из минералов преобладает, глины называют по этому минералу - каолинитовая, галлуазитовая и т.д.
По характеру технических требований промышленности среди глин выделяют четыре наиболее важные группы: легкоплавкие, огнеупорные и тугоплавкие; каолины; адсорбционные (высокодисперсные монтмориллонитовые).
Легкоплавкие глины - полиминеральные, обычно железисто- монтмориллонитовые и гидрослюдистые (часто с примесью песка и органических веществ), показатель огнеупорности менее 13500С.
Огнеупорные и тугоплавкие глины характеризуются высоким содержанием глинозема (20-42%), высокой связующей способностью; имеют мономинеральный состав (каолинитовый или монотермитовый) и огнеупорность не ниже 15800С.Тугоплавкие Г. не выдержаны по минеральному составу и имеют огнеупорность от 1350 до 15800С.
Каолин - разновидность глин, сложенная преимущественно каолинитом,; не имеет пластичности, высокой дисперсности и значительной связующей способности.
Адсорбционные Г. По минералогическому составу в основном монтмориллонитовые, отличаются повышенной связующей способностью. К этой группе относят бентониты.
По окраске различают желтые, голубые, красные или бурые, зеленые, черные глины.
Номенклатура глинистых пород
Аргиллиты - неслоистые породы, состоящие преимущественно из одного или многих глинистых минералов. Именно для этой группы пород применяется обычно удачный термин «глина». Однако слово «глина» обозначает также и продукты выветривания, или, сами глинистые минералы, материал вулканической и гидротермальной природы, поэтому, когда нужно указать, что речь идет о породе, следует говорить «аргиллит».
Глинистые сланцы, или слоистые аргиллиты. Их слоистость возникла в процессе осадконакопления.
Сланцы. Любая порода, рассланцованная под влиянием механического воздействия, является сланцем. Сланцеватость не зависит от слоистости, характерной для глинистых сланцев и обусловленной плоскостями напластования. Понятно, что оба типа отдельности могут присутствовать одновременно. Крупные сланцеватые серии называются иногда «филлитами». Если порода распадается на крупные тонкие плитки, ее называют «кровельным сланцем».
Мергели. Между глинами и карбонатными породами существуют переходные разности, которые называют мергелями. Глинистые известняки в отличие от мергелей уплотнены и консолидированы.
Термины «глинистый мергель», «мергелистая глина», «мергелистый известняк» являются синонимами. Для пород, карбонатная часть которых представлена доломитом, удобно использовать выражения «доломитовая глина», «доломитовый мергель» и «глинистый доломит».
Песчаные аргиллиты. Существуют переходные формы между глинами с одной стороны, песками и песчаниками с другой. Можно говорить о песчаных глинах, песчаных глинистых сланцах, песках, глинистых песчаниках.глинистых
Структуры и текстуры глинистых пород
Под структурой глин подразумевают распределение компонентов породы по гранулярному составу, форму частиц, их пространственную ориентировку по отношению друг к другу и силы сцепления, соединяющие их вместе.
Различают структуры в сечении, перпендикулярном к наслоению, и структуры в сечении, параллельном наслоению.
Структуры в сечении, перпендикулярном к наслоению, разделяются на: 1) гемогенные, если напластование или слоистость не выражены;
2) ориентированные, если слоистые силикаты имеют отчетливую ориентировку, возникшую при осадконакоплении, диагенезе и т.д.
3) слоистые, если порода состоит из чередующихся слойков;
4) циклические, если в породе наблюдается ритмическое чередование, например, в ленточных глинах, в ленточных мергелях и целом ряде других осадков.
5) Микролинзовидные, если цикличность настолько локализована, что слойки кажутся залегающими несогласно даже в масштабе образца или шлифа.
Структуры в сечении, параллельном слоистости, подразделяются на: 1) кристаллические, если основная масса составлена хорошо индивидуализированными чешуйками;
2) скрытокристаллические, если кристаллическое строение различимо с трудом по присутствию слабо преломляющих участков скрытокристаллические, или аморфные, если глинистое вещество кажется изотропным. Глинистая масса имеет кристаллическое строение, а впечатление изотропности обусловлено компенсацией, возникающей при наложении друг на друга мелких кристаллических частиц.
Среди скрытокристаллических структур можно выделить следующие разновидности: а) трещиноватые, сетчатые, обусловленные ориентированным расположением минералов по стенкам трещин;
б) петельчастые и хлопьевидные. Петельчатая структура характеризуется спутанноволокнистым сложением, напоминающем строение микроскопических волокон антигорита; хлопьевидная - присутствием округлых участков, окаймленных более высоко двупреломляющем материалом (либо слоистыми силикатами, либо кристаллами кальцита);
в) струйчатые, флюидальные, муаровые, обусловленные различными оптическими эффектами.
Структуры глинистых компонентов в цементе песчаных пород. Глинистая фракция пород представляет существенный интерес даже в тех случаях, когда присутствует в породе в подчиненном количестве или в виде незначительной примеси. Если глинистые минералы остаются неизменными среди изменяющейся основной массы породы, по ним можно судить о ранних этапах эволюции породы. И наоборот, если преобразуются глинистые минералы, а основная масса породы остается неизменной, по ним можно судить о недавних этапах эволюции породы.
Возникает проблема глинистых цементов, для которых тщательно разработана классификация структур глинистых цементов песчаников. Они подразделены на микроагрегатные, чешуйчатые, пленочные, крустификационные, вермикулитоподобные, лепидобластовые, сноповидные. В песках и песчаниках возникают новообразования глинистых минералов или слюидистых силикатов, составляющих существенную часть породы.
Слоистые силикаты участвуют в формировании оолитов и конкреционных структур. К этой категории близки также железные руды или породы с железистыми оолитами: изучение эволюции слоистых силикатов типа шамозитов и хлорита позволяет восстановить условия раннего и позднего диагенеза этих пород.
Особенностью некоторых глин является их пеллетовая текстура. Пеллеты представляют собой небольшие, округлые агрегаты глинистых минералов и мелкого кварца, рассеянные в матриксе, представленном тем же материалом. По размерам пеллеты составляют в диаметре 0,1-1,3мм, а в некоторых случаях достигают нескольких миллиметров(в длину). Их образование приписывают действию течения воды.
В некоторых глинистых породах осадочного происхождения проявляются реликтовые структуры, унаследованные от материнских пород, из которых они образовались. Примерами являются сапролиты,которые произошли от различных грубых вулканических и метаморфических пород. В этих породах достаточно хорошо сохранились « РЕЛИКТЫ» первичных минералов, поэтому можно проследить первоначальную гнейсовую сланцеватость, порфиробласты.
Другим примером реликтовой структуры являются бентониты и близкие к ним осадки, образующиеся in situ при преобразовании вулканического пепла. Нереликтовые структуры включают оолитовые и пизолитовые формы, возникающие в некоторых бокситовых и диаспоровых глинах. Известны также псевдоморфные замещения ракушечного материала монтмориллонитом и диагенетически перекристаллизованные структуры, подобные «метакристаллам» иллитовой слюды в тонкозернистой иллитовой основной массе. Большинство глинистых сланцев, однако, не проявляет ни одной из этих особенностей; они либо бесструктурны, либо слоисты/
Тонкослойные сланцы характеризуются ориентированными пластинчатыми слюдистыми компонентами, параллельными плоскости напластования, что хорошо видно под микроскопом. Хотя отдельные кристаллы располагаются не строго параллельно к плоскости напластования, шлифы, приготовленные перпендикулярно к этой плоскости, проявляют эффект одновременного погасания, как и в случае если бы шлиф был сделан из единого кристалла. В пластинчатых минералах световые колебания медленнее и параллельны спайности, поэтому проявляется параллельное погасание - эффект агрегатного погасания.
Однако в некоторых глинах и сланцах глинистые минералы проявляют беспорядочную ориентировку. Подобное явление может быть результатом аутигенной кристаллизации на месте. В других случаях подобное явление вызывается нарушением первичной структуры иллоядными донными организмами.
Свежеотложенные илы имеют чрезвычайно высокую водонасыщенность и очень большую пористость. Первоначальная пористость может составлять 70-80%. Поскольку в среднем в глинистых сланцах пористость составляет только 13%, то это означает, что первичные отложения были сильно уплотнены и обезвожены. Тот факт, уменьшение пористости происходит скорее за счет уплотнения, а не выполнения пор (как у песчаников), подтверждается постепенными изменениями структуры, которые направлены на то, чтобы ориентировать глинистые пластинки параллельно друг к другу и плоскости напластования.
Атомная структура, состав и группы глинистых минералов
Глинистые минералы представляют собой гидратированные алюмосиликаты, обычно с частичным замещением алюминия железом и магнием. Они тонкозернисты, обычно менее 5мкм, а в некоторых случаях их размер измеряется миллимикронами.
Атомная структура большинства глинистых минералов сложена двумя единицами. Одна структурная единица состоит из двух слоев плотноупакованных кислородов или гидроксилов, в которых атомы алюминия, железа, или магния расположены в октаэдрической координации таким образом, что каждый из них находится на равном расстоянии от шести кислородов или гидроокислов. Вторая структурная единица образована кремнекислородными тетраэдрами. В каждом тетраэдре атом кремния одинаково удален от четырех кислородов или гидроксилов, расположенных в форме тетраэдра с атомом кремния в центре, чтобы сбалансировать структуру. Кремнекислородные тетраэдры сгруппированы таким образом,что создают гексагональную сетку, которая бесконечно повторяется и образует лист состава Si4O6(OH)4. Тетраэдры расположены так, что все их вершины обращены в одну сторону, а основания лежат в одной и той плоскости. Эту структуру можно рассматривать как структуру, состоящую из перфорированной плоскости кислородных атомов, расположенных в плоскости основания тетраэдрических групп; плоскости атомов кремния с атомами кремния, расположенными в полости в месте соединения трех атомов кислорода и, следовательно образующими гексагональную сетку; плоскости атомов гидроксила, в которой каждый гидроксил расположен непосредственно над кремнием на вершине тетраэдров.
Глинистые минералы относятся к двум группам. В каолинитовой группе минерал характеризуется двухэтажной (1:1 слой) решеткой, состоящей из одного октаэдрического или гиббситового слоя, связанного с одним кремнекислородным тетраэдрическим слоем. Эта решетка не расширяется в зависимости от изменяющегося содержания воды и замещения на железо или магний в гиббситовом слое неизвестны. Другая группа глинистых минералов характеризуется трехэтажной (2:1) решеткой. В этом типе решетки октаэдрический алюминиевый слой расположен между кремнекислородными тетраэдрическими слоями. Несколько важных глинистых минералов принадлежит к трехэтажной группе. В монтмориллоните эти трехэтажные ячейки свободно объединяются по оси c, а вода и катионы расположены между ними. Количество воды изменяется таким образом, что величина с варьируется от 9,6 до 21,40А. Минерал имеет разбухающую решетку. Трехслойные соединения могут также объединяться калием, который благодаря соответствующему ионному диаметру и координационным свойствам связывают структуру воедино столь плотно, что расширение невозможно. Глинистая слюда, образованная таким образом, представляет собой иллит. Хлоритовая группа также имеет трехэтажную структуру, характеризующуюся внедрением бруситового слоя Mg(OH)2 между трехэтажными элементами. В каждой структурной группе возможны многие варианты по составу. Хотя многим из них на основании состава даны специальные названия, можно считать, что каждая группа проявляет беспредельно широкий диапазон состава. Глинистые минералы классифицируются главным образом на основе их структуры.
Основные группы глинистых минералов: каолинита, монтмориллонита, иллита или мусковита и хлорита.
Группа каолинита. Главным членом группы каолинита является каолинит, имеет формулу (OH)8Al4Si4O10 или Al2O3 2SIO2 2H2O. Старинное название этого минерала перешло от китайцев. Кау-линг-«высокая гора»; так называлось месторождение каолина.
Химический состав. Al2O3 39.5%,SIO2 46,5%, H2O 14%. Уд. Вес 2,58-2,60.
Облик кристаллов. Более или менее хорошо образованные пластинчатые кристаллы исключительно редки и малы по размерам (до 1мм). Весьма вероятно, что они относились не к каолину, а к диккиту или накриту. Чаще наблюдаются обломки обломки изогнутых столбчатых кристаллических образований, в увеличенном виде напонающих дождевых червей. Агрегаты рыхлые, чешуйчатые или плотные тонкозернистые.
Цвет. Отдельные чешуйки и пластинки бесцветны. Сплошные массы- белого цвета, нередко с желтым, буроватым, красноватым, иногда зеленоватым или голубоватым оттенком. Блеск отдельных чешуек и пластинок перламутровый, а сплошных масс - матовый.
Твердость около 1. Отдельные чешуйки гибки, но не обладают упругостью. В сухом состоянии землистые массы кажутся тощими на ощупь.
Аноксит подобен каолиниту, за исключением молекулярного соотношения SIO2:Al2O3 приблизительно равного трем вместо двух, что менее обычно. Диккит и накрит, сходные с каолинитом по составу, но с небольшими отличиями по форме кристаллов, также являются членами данной группы.
Монтмориллонитовая группа, получившая название по главному минералу группы, монтмориллониту, который имеет состав: (OH)4AL4Si8O10 NH2O.
Монтмориллонит назван по месту нахождения в Монтмориллоне (Франция). Химический состав непостоянный, сильно зависит от варьирующего содержания воды. По анализам чистых разностей устанавливаются следующие колебания (%): Al2O3 11-22, Fe2O3 0-5и больше (ферримонтмориллонит), MGO 4-9, CAO 0, 8-3, 5 и выше в кальциомонтмориллоните,SIO2 48-56, H2O 12-24.
Цвет монтмориллонита белый с сероватым, иногда синеватым оттенком, розовый, розово-красный, иногда зеленый.
Блеск В сухом состоянии матовый.
Твердость отдельных чешуек неизвестна. Очень мягкий. Жирный.
Замечательной и чрезвычайно важной в практическом отношении особенностью минералов группы монтмориллонита является их свойство набухать в присутствии воды, а при нагревании постепенно отдавать адсорбированную воду.
К минералам группы монтмориллонита относятся существенно магнезиальные, существенно алюминиевые и промежуточные между ними виды.Магний обычно замещает часть ионов алюминия в решетке. В монтмориллонитовую группу входят бейделит, который имеет молекулярное отношение SIO2:Al2O3 равное трем, и нонтронит, в котором окисное железо замещает алюминий.
Иллитовая, или глинисто-слюдистая группа включает иллит, который имеет общую формулу
(OH)4 Ky(Al4 Fe4 Mg4 Mg6) (Si8-y Aly) O20, Где « y » варьируется от 1 до 1,5. Иллит является разновидностью белых слюд, но отличается от них, вероятно, тем, что содержит меньше калия и больше воды, чем обычно свойственно слюдам. Кроме разновидностей иллита группа содержит глауконит.
Группа хлорита состоит из минералов богатых магнием, которые широко представлены в сланцах и в которых ионы двухвалентного железа занимают видное место.
Хлорит имеет химический состав 5(Mg,Fe)O Al2O3 3SIO2 4H2O. Твердость 2-2,5. Удельный вес 2,0-2,8. Блеск от стеклянного до перламутрового. Цвет зеленый. Форма кристаллов - таблички, чешуйки, срастающиеся друзами.
Известно также множество « смешаннослойных» глинистых минералов. Структура этой группы является результатом упорядоченного или неупорядоченного расположения основных глинистых минеральных пакетов друг относительно друга по оси с. В некоторых из них отмечается переслаивание двух- и трехэтажных слоев. Подобные типы смешаннослойного строения обычно называют каолинит-иллитовыми, хлорит-иллитовыми и так далее, вместо того чтобы изобретать новые наименования для каждой смеси.
Помимо основных групп, перечисленных выше, некоторые глинистые минералы реже встречаются и имеют несколько отличную кристаллическую структуру, например, галлуазит (OH)16Al4Si4O6, а также менее гидратированный метагаллуазит (OH)8Al4Si4O10 и аллофан, некристаллический взаимный раствор двуокиси кремния, окиси алюминия и воды в различных пропорциях. В некоторых случаях в глинах обнаруживают вермикулит и палыгорскит (сепиолит и аттапульгит).
Галлузиатовые минералы. Существуют две формы галлузиата, одна из которых имеет состав (OH)8Si4O10, а другая - (OH)8Si4O10 4H2O. При относительно низких температурах (- 600С) последняя форма необратимо дегидратируется и переходит в первую форму. Галлузиатовые минералы построены последовательными слоями такого же структурного состава, как и слои, слагающие каолинит.
Высокогидратированная форма состоит из каолинитовых слоев, разделенных единичным молекулярным слоем водных молекул. Переход в дегидратированную форму вызывается потерей межслоевых водных молекул. По данным Бриндли, при низких температурах (60-750С) происходит только частичная дегидратация, а для полного удаления межслоевых воды необходима температура порядка 4000С. При более низких температурах образуется частично дегидратированные формы, которые могут быть устойчивыми. В месторождениях галлузиат имеет тенденцию к частичной дегидратации, к образованию частично дегидратированного галлузиата, который в том случае, если месторождение крупное, постепенно переходит с глубиной в гидратированную форму.
Для обозначения различно гидратированного галлузиата существует ряд наименований. Низкогидратированная форма называется галлузиатом или метагаллузиатом, а более высокогидратированная форма - гидратированным галлузиатом, энделитом или галлузиатом.
Аллофановыми минералами являются те компоненты глинистых минералов, которые аморфны по отношению к рентгеновским лучам. Расположение тетраэдрических и октаэдрических единиц по отношению друг к другу в них недостаточно правильное, чтобы сделать возможной дифракцию, или отдельные структурные единицы, которые хорошо упорядочены, слишком малы по размеру, чтобы дать дифракционные эффекты.
Аллофановые компоненты не имеют обычно определенного химического состава или формы. Глины, содержащие аллофан,часто включает большие количества (- 5%) фосфатного или сульфатного компонента. Кроме того, в них обычно относительно немного щелочей и щелочных земель, что приближает их к монтмориллониту, но последний имеет тенденцию содержать некоторое количество магния.
Вермикулит в глинистых минералах встречается в идее чрезвычайно мелких частиц в смеси с другими глинистыми минералами и часто смешаннослойных постройках. Определить его характерные свойства трудно, а часто невозможно. В связи сэтим до сих пор неизвестны диспергируемость его в воде, а также характерная форма и размер частиц. Структура вермикулита подобна структуре хлорита, за исключением того, что в структуре вермикулита межслоевые ионы магния гидратированы чаще, чем чем это имеет место в структуре брусита. Расположение молекул воды вокруг ионов магния и относительно большой заряд на поверхности кристаллической решетки по сравнению с монтмориллонитом, по-видимому, препятствуют набуханию минерала при обработке полярными молекулами. Однако межслоевая вода легко удаляется при нагревании до температуры порядка 1000С, а кристаллическая решетка минерала сжимается почти до 10 А0, подобно монтмориллониту, отличаясь в этом отношении от хлорита.
Визуально структуру аттапульгита можно представить в виде пучка брусочкоподобных структурных единиц, закономерно скрепленных вместе их длинными сторонами. Наружная сторона такого пучка брусочкоподобных частиц будет иметь вид «плато и каналов» или желобов, а их внутренняя часть будет состоять из чередующихся твердых брусочков и вытягнутых каналов с угловатым поперечным сечением.
Структура сепиолита сходна соструктурой аттапульгита, отличаясь от нее главным образом размером брусочковидных структурных единиц и замещениями в пределах структуры. В сепиолите эти брусочкоподобные структурные единицы примерно на 50% шире, чем в аттапульгите. В структуре сепиолита существуют редкие замещения ионов магния или кремния. Встречается в волокнистых разновидностях с древовидным асбестом, в гидротермальных жилах, а также в виде землистых масс в озерных и морских отложениях.
Палыгорскиты давно известны под названиями «горная бумага», «горный картон», «горное дерево». Палыгорскиты являются алюмомагнезиальными силикатами, к которых алюминий и магний присутствуют приблизительно в равных количествах. Для этих минералов характерно волокнистое строение.
Элементы, составляющие глины
Щелочные элементы(Na и K). Содержание калия и натрия в изверженных породах, кристаллических сланцах, в среднем весьма близки. Отношение числа атомов K/Na в этих породах равно 1. иная картина наблюдается в осадках и морских водах. Ион K не гидратируется, и его кажущийся объем в три раза меньше объема иона Na .
Рассматривая поведение ионов K в кристалле, следует констатировать,что по сравнению с ионами Na они наилучшим образом обеспечивают устойчивость кристаллической решетки слюды и, следовательно, иллитов. Конечно, в иллитах, являющихся неупорядоченными слюдами, присутствует определенное количество натрия, но в них в заметно большем количестве содержит калий.
В силу предпочтительной адсорбции и вхождения в силикаты количество калия в растворах гидросферы значительно уступает количеству натрия. Оба механизма действуют уже на первых стадиях выветривания. Сразу же начинается адсорбция калия и фиксация его в силикатах. Поэтому серицизация полевых шпатов и иллитизация представляют два основных явления при выветривании. Вот почему пресные воды зоны цементации характеризуются отношением K/Na=1/10,а морские воды 1/28,5. Спутниками калия являются рубидий и цезий.
Щелочноземельные элементы (Ca и Mg). В большинстве случаев поведение кальция и магния в гидросфере отличается незначительно. Они накапливаются в карбонатных осадках и сопровождаются железом в закисной форме. Карбонатные породы могут иметь как органическое, так и химическое происхождение. В органогенных карбонатных породах резко преобладает кальций, поскольку скелетные остатки организмов обычно состоят из углекислой извести. Хемогенные породы могут быть как кальциевыми, так и магниевыми и железистыми.
Если при возникновении органогенных карбонатных пород основную роль играет кальций, а при возникновении хемогенных осадков, насколько можно судить по отношению объема доломитов и известняков, в равной мере важны и кальций и магний, то при новообразовании силикатов основное значение имеет магний. При трансформации открытых смешаннослойных или деградированных глинистых минералов и возникновении новообразований в гидросфере фиксируются значительные количества магния. Хлорит, смешаннослойные минералы с хлоритовыми слоями, мотмориллонит, палыгорскит, сепиолит, тальк являются магнезиальными слоистыми силикатами. Магний содержится также в иллитах, глауконитах и разнообразных смешаннослойных минералах. Кальций во всех перечисленных минералах отсутствует. Можно считать, что фиксируется в карбонатах, в то время как магний является важной составляющей силикатов.
Железо и алюминий. Эти два элемента довольно близки между собой. Однако в связи с тем, что железо в природе встречается как в окисной, так и в закисной форме, его поведение может отличаться от поведения алюминия. Это различно проявляется уже на начальных стадиях выветривания.
Рассмотрим в качестве примера латеритизацию, при которой происходит наиболее полное высбождение элементов. При этом железо ведет себя по-разному: часть его в закисной форме мигрирует в виде истинного раствора или феррогуминовых комплексов; другая часть остается на месте, образуя полуторные окислы, в первую очередь гетит. Она сопровождает глинозем, кристаллизующийся в форме гиббсита. Наряду с глиноземом окисное железо является основным компонентом латеритных кирас и бокситовых горизонтов.
Растворимое железо постепенно мигрирует в седиментационные бассейны, в которых оно в значительной степени отделяется от алюминия. В осадочных отложениях оно фиксируется в четырех формах: в виде свободных окислов, пигментирующих красноцветные обломочные серии; в виде карбоната (сидерита); в восстановленной форме в виде сульфида (гидротроилита); наконец, в силикатной форме. Лишь в последнем случае железо ассоциирует с глиноземом, основная часть которого связывается в алюмокалиевых силикатах.
Заметим, что для железа, особенно на стадии диагенеза, весьма характерна тенденция вновь входить в решетку силикатов. С силикатизацией железа связано формирование глауконита морских осадков, шамозитов железных руд и рано или поздно развивающая хлоритизация. Формирование постседиментационного - диагенетического и эпигенетического - хлорита происходит за счет свободных гидроокислов, сульфидов, карбонатов, глауконитов и даже иллитов, в которых всегда содержится то или иное количество железа. В хлорите железо наряду с магнием находится в октаэдрических позициях.
Малоподвижный глинозем еще раньше переходит в силикатную форму. При этом в условиях умеренного выветривания возникают серициты и иллиты, а при интенсивном выветривании формируется каолинит. Если исключить достаточно редкие случаи бокситизации, когда глинозем сохраняет свою геохимическую обособленность, можно считать, что высвобожденный алюминий в сочетании с кремнием сразу же вновь входит в решетку алюмосиликатных минералов.
Алюминий и кремний. Поведение алюминия напоминает не только поведение железа, но отчасти также и поведение кремния.
При выветривании в обстановке выщелачивания кремнезем более растворим, чем глинозем. Часть высвобожденного кремнезема фиксируется в профилях выветривании, участвуя в формировании слоистых силикатов и кремнистых новообразований. Другая часть мигрирует в седиментационные бассейны, где также дает начало новообразованным слоистым силикатам и обусловливает окремнение осадков. Основная масса кремнезема комбинируется с глиноземом, и лишь незначительная его часть остается в свободном состоянии.
Высвобожденный глинозем при достаточно интенсивном выщелачивании, обеспечивающем удаление кремнезема, может кристаллизоваться в гиббсит. Однако чаще всего в присутствии постоянных водоносных горизонтов происходит накопление кремнезема и возникают алюмосиликатные глинистые минералы. Поэтому обычно алюминий и кремний накапливаются совместно, и лишь иногда происходит их разделение. Как правило, оба элемента рекомбинируются немедленно после высвобождения из силикатов. Если же они разделяются, то малоподвижный глинозем концентрируется на месте в профиле выветривания и формируются бокситовые горизонты.
Кремний и другие катионы в новообразованиях. Возрастание степени несовершенства кристаллической структуры новообразований обусловлено влиянием посторонних катионов. Степень совершенства структуры уменьшается от макро- до микрокристаллического кварца, халцедона, опала со структурой кристобалита - тридимита, наконец, еще менее упорядоченного опала. Неупорядоченность возрастает под влиянием катионов кальция, который хотя не участвует в формировании кристаллической решетки силикатов гидросферы, но определяет возникновение неупорядоченности. Присутствие в растворе заметного количества катионов способствует возникновению кристаллических структур силикатов. В частности, при достаточном содержании Al, Fe, Mg формируются слоистые гидроокислы этих катионов, на которых фиксируется кремнезем и образуются глинистые минералы.
В этом процессе важнейшую роль играет глинозем. В ненасыщенных растворах он комбинируется с кремнеземом в каолинит. В растворах с высоким содержанием различных катионов он ассоциирует с кремнеземом в тетраэдрическом слое и частично занимает октаэдрические позиции. Чем выше содержание глинозема в растворах, тем богаче глиноземом новообразования глинистых минералов.
Структура силикатов определяется характером сочетания кремнекислородных тетраэдров. Алюминий замещается кремнием, другие катионы располагаются в пустотах структуры. Такое представление обусловлено тем, что периодичность решетки минералов в значительной степени определяется характером сочетания кремнекислородных тетраэдров. Однако в последнее время накапливается все больше фактов, свидетельствующих о важной роли катионов при росте кристаллов. Разнообразие структур и возникновение некоторых необычных их типов во многом зависит от размеров катионов
Действительно, в присутствии кремнезема именно катионы влияют на характер кристаллической структуры. Как образно отметил Гольдштауб, «катионы заключены среди кремнекислородных тетраэдров, как рыба, пойманная в сеть», причем сеть приспосабливается к размерам и расположению в ней рыбы.
При снижении влияния катионов на формирующуюся силикатную кристаллическую структуру, возникает трехмерная структура кварца. По мере роста нарушающих структуру катионов вместо трехмерной структуры формируются «чередующиеся слои» кристобалита или тридимита. Эти слои состоят из колец кристобалита, но в вертикальном направлении периодичность отсутствует. Можно говорить о начале формирования двухмерных структур. Организуясь подобным образом, они дают начало глинистым минералам. Можно считать, что если в поверхностных условиях при формировании структуры определяющую роль играют K, Mg, Al то неизбежно образуются двухмерные структуры. На глубине K, Mg, Ca, Al могут входить в трехмерные структуры полевых шпатов.
Неупорядоченность, упорядоченность, размер частиц. Возрастание неупорядоченности структуры сопровождается в новообразованиях кремнезема уменьшением размера кристаллов, и в конечном итоге возникают опалы, стоящие на границе кристаллического состояния вещества. Иначе говоря, по мере того как в кристаллическую структуру кремнезема входят катионы, размер кристаллов уменьшается.
При образовании глинистых минералов формируются упорядоченные структуры. Однако степень совершенства структуры тесно связана с количеством изотипных и гомотипных замещений. В глинистых минералах возможность изоморфных замещений очень велика, что препятствует формирование совершенных кристаллических структур с большим размером кристаллов глинистых минералов. На стадии эпигенеза и метаморфизма под влиянием температуры и давления идет перестройка структур слоистых силикатов, чуждые ионы удаляются или перегруппируются, размер кристаллов возрастает. Важной особенностью геохимии поверхностных процессов являются малые размеры образующихся кристаллов, отражающие неупорядоченность их кристаллических структур. Всякое выщелачивание катионов из решетки силикатов обусловливает ухудшение степени совершенства их структуры и диспергацию минералов. Это один из главнейших механизмов выветривания. И напротив, любые примеси в растущем кристалле препятствуют возникновению совершенной структуры и обуславливают «криптокристаллическое» состояние минерала. При освобождении от примесей структура упорядочивается и размеры кристаллов возрастают.
Синтез
Все глинистые минералы, за исключением аттапульгит-сепиолита и, возможно, галлуазита, были сынтезированы из смесей окислов при низких температурах и давлениях. Температурны синтеза были порядка первых сотен градусов Цельсия, а давления-порядка 100 атм или ниже. Эта работа в об щем показала, что в системах глинозем-кремнезем без щелочей и щелочных земель с отношениями кремнезема к глинозему, лежащими в пределах составов глинистих минералов, образуется каолинит. При добавке к таким системам калия образуется иллит, при добавке небольших количеств магния-монтмориллонит, а при болем високих концентрациях магния-хлорит. В присутствии натрия возникают цеолиты. Кальций, по-видимому, слабо влияет на направление синтеза, хотя, возможно, он благоприятствует развитию структуры монтмориллонитового типа.
Энен и Робише показали, что глинистые минералы могут бать синтезированы при обычных температурах и давлении, если окислы смешивать вместе очень медленно и при большом разбавлении.
Гидротермальное образование
Уже давно было установлено, что аргиллизация, вызванная гидротермальным воздействием, часто наблюдается в виде ореолов вокруг рудных месторождений. Глинистые продукты изменения также ассоциируют с горячими источниками и гейзерами. Масштабы ореолов изменения могут варьировать от нескольких до 100 футов и более. В таких ореолах измененных пород встречены все глинистые минералы, за исключением аттапульгит -сепиолита. Часто устанавливается зональное расположение глинистых минералов вокруг источника изменения, причем слюда и каолинит располагаются ближе к этому источнику, а хлорит и монтмориллонит - дальше.
Явления каолинизации происходят в условиях низкотемпературных гидротермальных процессов при воздействии очевидно кислых вод, содержащих в основном CO2, на алюмосиликаты и силикаты алюминия, не содержащие щелочей. Этот процесс, по существу, приводит к образованию псевдоморфоз каолинита по тем или иным минералам с сохранением их внешних форм или очертаний. Таковы, например, псевдоморфозы каолинита по полевым шпатам, мусковиту, топазу, лейциту и др. Более богатый кремнеземом аноксит образуется в виде псевдоморфоз по биотиту, пироксенам, роговым обманкам и др.
Выветривание и почвы
Глинистые минералы образовались в результате почвообразующих процессов, или эти процессы оказали существенное влияние на изменение характера глинистых минералов. Характер глинистых минералов, встречающихся в данной почве, зависит от природы материнского материала, а также от климата, топографии, растительности и вре
Список литературы
1. Ж. МИЛО «ГЕОЛОГИЯ ГЛИН» ЛЕНИНГРАД. 1968г.
2. Ф.ДЖ. ПЕТТИДЖОН «ОСАДОЧНЫЕ ПОРОДЫ». МОСКВА 1981г.
3. ДЖ. ГРИНСМИТ «ПЕТРОЛОГИЯ ОСАДОЧНЫХ ПОРОД». МОСКВА «МИР» 1981г.
4. Р.Э.ГРИМ «МИНЕРАЛОГИЯ И ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ГЛИН». МОСКВА «МИР» 1967г.
5. А.Г. БЕТЕХТИН «МИНЕРАЛОГИЯ» МОСКВА 1950г.
6. ГОРНАЯ ЭНЦИКЛОПЕДИЯ. МОСКВА «СОВЕТСКАЯ ЭНЦИКЛОПЕДИЯ» 1986г.
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы