Плоскость как простейший вид поверхности, ее задание тремя точками. Основные геометрические фигуры на плоскости. Определение геометрического места точек, примеры для угла и окружности. Сущность использования метода геометрических мест при решении задач.
Слово «геометрия» греческое, в переводе на русский язык означает «землемерие». Легко представить себе поверхность как границу тела: плоская поверхность стола, сферическая поверхность мяча, цилиндрическая поверхность трубы. Прямая m, лежащая в плоскости, разбивает ее на две части - полуплоскости; точки этой прямой и только они являются общими точками обеих полуплоскостей. Плоскости задаются тремя точками и обозначаются часто так: плоскость АВС или PQR и т.д. Под фигурой обычно понимают некоторое сочетание определенным образом расположенных в одной плоскости (а иногда и в пространстве) элементов: точек, прямых, лучей, отрезков (иногда и плоскостей).Геометрическое место точек - это множество всех точек, удовлетворяющих определенным заданным условиям. Пусть PO AB и AO = OB: Тогда, расстояния от любой точки P, лежащей на срединном перпендикуляре PO, до концов Тогда отрезок, соединяющий центр окружности с какой-либо ее точкой, называется радиусом и обозначается r или R. Прямая PQ, проходящая через точки M и N окружности, называется секущей, а ее отрезок MN, лежащий внутри окружности - хордой. Если масштаб для построения чертежа задан или выбран, то откладывают на оси х от некоторой точки О отрезок ОАХ, равный 7 единицам, и на перпендикуляре к этой оси, проведенном из точки Ах, отрезки АХА" = 3 ед. и АХА" = 5 ед.Геометрическое место точек, удовлетворяющих первому условию, есть некоторая фигура F1, а геометрическое место точек, удовлетворяющих второму условию, есть некоторая фигура F2. Если эти геометрические места простые (скажем, состоят из прямых и окружностей), то мы можем их построить и найти интересующую нас точку X. Ломаной А1А2А3…An называется фигура, которая состоит из точек А1, А2, …, An и соединяющих их отрезков А1А2, A2A3, …, An-1, An. Простая замкнутая ломаная называется многоугольником, если ее соседние звенья не лежат на одной прямой. Многоугольник называется выпуклым, если он лежит в одной полуплоскости относительно любой прямой, содержащей его сторону (рис.Геометрическим местом точек плоскости, равноудаленных от сторон угла, будет биссектриса данного угла (рис. Геометрическим местом точек, равноудаленных от двух данных точек, будет прямая, перпендикулярная к отрезку, соединяющему эти точки, и проходящая через его середину (рис. Геометрическим местом точек плоскости, равноудаленных от заданной точки, будет окружность с центром в этой точке (рис. Местоположение центра окружности, описанной около треугольника. Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведенных через середины этих сторон (рис.Решение: Пусть окружность с центром O проходит через данные точки Поскольку OA = OB (как радиусы одной окружности), точка O лежит на серединном перпендикуляре к отрезку AB. Обратно, каждая точка O, лежащая на серединном перпендикуляре к AB, равноудалена от точек Значит, точка O - центр окружности, проходящей через точки Эта величина равна k для точек M с координатами ((a2 k)/2a, y); все такие точки лежат на прямой, перпендикулярной AB.
План
План
Введение
1. Определение геометрического места точек
2. Сущность метода геометрических мест
3. Основные геометрические места точек на плоскости
4. Примеры задач на геометрические места точек
Список литературы
Введение
Геометрия - это наука о свойствах геометрических фигур. Слово «геометрия» греческое, в переводе на русский язык означает «землемерие». Такое название этой науке было дано потому, что в древнее время главной целью геометрии было измерение расстояний и площадей на земной поверхности.
Легко представить себе поверхность как границу тела: плоская поверхность стола, сферическая поверхность мяча, цилиндрическая поверхность трубы. Но такое представление не полно. Возьмем тонкую замкнутую проволоку изогнутой формы и опустим ее в мыльную пену. Если мы осторожно извлечем ее из пены, то увидим, что просвет в проволочном "кольце" затянут тончайшей мыльной пленкой. Правильно представлять себе поверхность именно как тонкую пленку (но лишенную всякой толщины).
Важнейшая и простейшая поверхность - плоскость. Прямая m, лежащая в плоскости, разбивает ее на две части - полуплоскости; точки этой прямой и только они являются общими точками обеих полуплоскостей. Если А - точка одной полуплоскости, а В - другой, то отрезок АВ пересекает границу m полуплоскостей в некоторой точке С, лежащей между А и В.
Плоскости задаются тремя точками и обозначаются часто так: плоскость АВС или PQR и т.д. Иногда бывает проще обозначать плоскость одной буквой греческого алфавита: a, b, g, d...
Под фигурой обычно понимают некоторое сочетание определенным образом расположенных в одной плоскости (а иногда и в пространстве) элементов: точек, прямых, лучей, отрезков (иногда и плоскостей).
Под телом понимают обычно часть пространства, ограниченную какой-либо замкнутой поверхностью. Так, конус - тело, ограниченное канонической поверхностью с боков и плоским круглым основанием снизу. Куб - тело, ограниченное шестью квадратными гранями, и т.д. Курс геометрии традиционно подразделяется на планиметрию и стереометрию; в планиметрии рассматриваются свойства различных фигур (треугольников, многоугольников, окружностей), лежащих в плоскости. В стереометрии изучаются свойства пространственных фигур и тел.
Список литературы
1. Погорелов А.В. Геометрия: Учебник для 7-9 классов общеобразовательных учреждений. - М.: Просвещение, 2000, с. 61.
2. Савин А.П. Метод геометрических мест /Факультативный курс по математике: Учебное пособие для 7-9 классов средней школы. Сост. И.Л. Никольская. - М.: Просвещение, 1991, с. 74.
3. Смирнова И.М., Смирнов В.А. Геометрия: Учебник для 7-9 классов общеобразовательных учреждений. - М.: Мнемозина, 2005, с. 84.
4. Шарыгин И.Ф. Геометрия. 7-9 классы: Учебник для общеобразовательных учебных заведений. - М.: Дрофа, 1997, с. 76.
5. Интернет ресурс: http://matschool2005.narod.ru/Lessons/Lesson8.htm
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы