Генная инженерия растений - Курсовая работа

бесплатно 0
4.5 48
История генной инженерии. Достижения генной инженерии растений. Анализ преимуществ и рентабельности растений, генетически модифицированных с помощью бактерии Bacillus thuringiensis (Bt-растения). Перспективы и проекты создания трансгенных культур.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
В работе раскрывается тема о генетически модифицированных растениях с помощью бактерий Bacillus thuringiensis. В последнее десятилетие благодаря разработке новых и совершенствованию имеющихся методов молекулярно-генетического изучения геномов живых организмов идет активное развитие сельскохозяйственной биотехнологии. Использование трансгенных растений в биотехнологии позволяет значительно ускорить процесс получения нового сорта, снизить его себестоимость и получить хорошо прогнозируемый эффект по признаку, определяемому встроенной конструкцией. Большинство культивируемых генно-модифицированных организмов, растении обладают устойчивостью к возбудителям болезней вирусов и грибов, насекомым-вредителям или к гербицидам. Условно генные модификации растений можно разделить на две группы: модификации повышающие урожайность культуры (путем приобретения устойчивости к неблагоприятным факторам окружающей среды) и модификации, улучшающие технологическую ценность культуры.Генная инженерия появилась благодаря работам многих исследователей в разных отраслях биохимии и молекулярной генетики. Шло интенсивное развитие молекулярной генетики, объектами которой стали E. coli, ее вирусы и плазмиды. ДНК вирусов и плазмид вводили в клетки в биологически активной форме, обеспечивая ее репликацию и экспрессию соответствующих генов. Второй этап связан с началом работ по получению рекомбинантных молекул ДНК между хромосомными генами прокариот и различными плазмидами, доказательством их стабильности и жизнеспособности. Генетическая инженерия - это методы получения рекомбинантных ДНК, объединяющих последовательности равного происхождения, т.е. осуществляется перенос целых хромосом от клеток-доноров в клетки-реципиенты.Но ее применение вызывает ожесточенные споры: сторонники, прежде всего создатели новых форм растений говорят о второй «зеленой революции», которая решит все наболевшие проблемы сельского хозяйства, а противники, преимущественно радикальные «зеленые» организации усматривают в ГМО не только гипотетические риски в будущем, но и угрозу, якобы уже сегодня нависшую над человеком и природой. Собственно, ее история и началась с момента, когда ученые научились заменять гены растения и гены бактерии в Т-ДНК генами, которые необходимо ввести в растение. Следующий довод - неизвестно, как новые растения повлияют на существующие пищевые цепи и экологический баланс в мире нельзя, исключить, что насекомые, обитающие на ГМ-растениях, подвергнутся мутации и последствия этого могут быть непредсказуемыми. В основе генной инженерии растений лежат методы культивирования клеток и тканей растений in vitro и возможность регенерации целого растения из отдельных клеток [6]. Это свойство открывает для молекулярных биологов большие возможности в изучении функционирования генов, введенных в растения, а также используется в селекции растений.Еще 10 лет тому назад биотехнология растений заметно отставала в своем развитии, но за последние 3 года наблюдается быстрый выброс на рынок трансгенных растений с новыми полезными признаками. Трансгенные растения в США в 1996 году занимали площадь 3 млн. акров, в 1997 году площадь увеличилась до 15 млн. акров, в 1998 году - до 60 млн. акров, а в 2000 году до 80 млн. акров. Поскольку основные трансгенные формы кукурузы, сои, хлопчатника с устойчивостью к гербицидам и насекомым хорошо себя зарекомендовали, то не сложно догадаться, что площадь под генноиженерные растения в 2001 году увеличилась примерно в 4 - 5 раз. В апреле 1998 года доля в процентах трансгенных форм растений в сельском хозяйстве составила: кукуруза - 6%; соя - 12%; хлопчатник - 15%; томаты - <1%. Открытия последних лет свидетельствуют о том, что растения еще долго будут оставаться источником полезных биологически-активных веществ (БАВ), и что способности растительной клетки к синтезу сложных БАВ все еще значительно превосходят синтетические способности инженера-химика.Bt-белки - инсектицидные белки Bacillus thuringiensis, экспрессируемые модифицированными растениями, что обеспечивает безопасную технологию борьбы с насекомыми-вредителями. Модифицированные растения обеспечивают высокоэффективную борьбу с большинством насекомых-вредителей, таких как европейский зерновой мотылек, юго-западный зерновой мотылек, табачная листоверка, хлопковая листоверка, розовый коробочный червь (хлопковая совка) и колорадский жук, позволяя сократить применение обычных химических пестицидов. Другие преимущества этих культур состоят в том, что они содержат в зерне пониженные концентрации фунготоксинов, что позволяет осуществлять дополнительную борьбу с вредителями, используя полезных насекомых, численность которых увеличивается благодаря снижению уровня обработки посевов инсектицидами широкого спектра действия. Поскольку Cry-белок содержится непосредственно внутри растения (в микроколичествах), его потенциальное воздействие на сельском хозйстве, рабочих и живые организмы, не относящихся к группе вредителей, ничтожно, и, следовательно, воздействие этих растений на окружа

План
СОДЕРЖАНИЕ

ОПРЕДЕЛЕНИЯ

СОКРАЩЕНИЕ И ОБОЗНАЧЕНИЯ

ВВЕДЕНИЕ

1. ОСНОВНАЯ ЧАСТЬ

1.1 История генной инженерии

1.2 Генная инженерия растений

2. СОЗДАНИЕ ТРАНСГЕННЫХ РАСТЕНИЙ

2.1 Генетически модифицированные растения с помощью бактерии Bacillus thuringiensis

2.2 Трансгенные кукуруза и хлопок

2.3 Трансгенный картофель

3. ПЕРСПЕКТИВНЫЕ ПРОЕКТЫ СОЗДАНИЯ ТРАНСГЕННЫХ КУЛЬТУР РАСТЕНИЙ

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?