Исследование законов и механизмов наследственности и изменчивости. Законы дискретной наследственности Г. Менделя. Обоснование хромосомной теории наследственности Т. Морганом. Анализ основных проблем, исследуемых генетикой. Связь генетики и селекции.
По способности управлять своими объектами и конструировать их генетика становится все более похожей на физику, математику и инженерно-технические дисциплины. Многочисленные хромосомные и генные карты, записи генетических текстов, схемы строения, работы и эволюции генов и управляемых ими систем и процессов получены точными методами и сами не менее точны, чем алгоритмы и технические чертежи. В профессиональных текстах генетиков, словно в своеобразном магическом кристалле, непроизвольно отображались, фокусировались и сменялись не только рациональные пути развития самой генетики, но и "модные" веяния в различных областях точных, естественных и гуманитарных наук, а также в житейской практике. Предпринимаемая попытка может оказаться интересной не только для логиков, методологов и философов различных областей науки, лингвистов, филологов и психологов, но и для самих генетиков. Генетика (от греч. ??????? - происходящий от кого-то) - наука о законах и механизмах наследственности и изменчивости.Генетические исследования преследуют цели двоякого рода: познание закономерностей наследственности и изменчивости и изыскание путей практического использования этих закономерностей. От поколения к поколению передается (хотя иногда и в несколько искаженном виде) информация обо всех многообразных морфологических, физиологических и биохимических признаках, которые должны реализоваться у потомков. Исходя из такого кибернетического характера генетических процессов, удобно сформулировать четыре основные теоретические проблемы, исследуемые генетикой: - Во-первых, проблема хранения генетической информации. Изучаются механизмы и закономерности передачи генетической информации от клетки к клетке и от поколения к поколению. Изучается, как генетическая информация воплощается в конкретных признаках развивающегося организма, взаимодействуя при этом с влияниями окружающей среды, в той или иной мере изменяющей эти признаки, подчас значительно.Селекцией называют также отрасль сельского хозяйства, занимающуюся выведением новых сортов и гибридов сельскохозяйственных культур и пород животных. Для успешной селекционной работы учитывают: 1) исходное сортовое и видовое разнообразие растений и животных - объектов селекционной работы, 2) мутации и роль среды в проявлении и развитии изучаемых признаков, 3) закономерности наследования при гибридизации, 4) формы искусственного отбора (массовый и индивидуальный).Задачи современной селекции вытекают из ее определения - это выведение новых и совершенствование уже существующих сортов растений, пород животных и штаммов микроорганизмов. Сортом, породой и штаммом называют устойчивую группу (популяцию) живых организмов, искусственно созданную человеком и имеющую определенные наследственные особенности. Все особи внутри породы, сорта и штамма имеют идентичные, наследственно закрепленные морфологические, физиолого-биохимические и хозяйственные признаки и свойства, а также однотипную реакцию на действие факторов внешней среды. Например, выведены породы кур, не снижающие продуктивности в условиях большой скученности животных на птицефабриках. Селекция должна учитывать также и потребности рынка сбыта сельскохозяйственной продукции, удовлетворения запросов конкретных отраслей промышленного производства.Некоторые особенности новых технологий 21 века могут привести к большим опасностям, чем существующие средства массового уничтожения.
План
Оглавление
Введение
1. Что изучает генетика
1.1 Основные задачи генетики
2. Селекция
2.2 Основные задачи селекции
3. Тесная взаимосвязь двух наук
Заключение
Список использованной литературы генетика селекция наследственность мендель
Введение
"Изза врожденных дефектов наша цивилизованная человеческая порода гораздо слабее, чем у животных любого другого вида - как диких, так и одомашненных... Если бы на усовершенствование человеческой расы мы потратили двадцатую часть тех сил и средств, что тратятся на улучшение породы лошадей и скота, какую вселенную гениальности могли бы мы сотворить!». Фрэнсис Гальтон (английский психолог и антрополог).
Генетика - одна из немногих фундаментальных биологических наук, которая с самого своего зарождения была точной. История ее развития - это история все более и более точных методов и результатов. По способности управлять своими объектами и конструировать их генетика становится все более похожей на физику, математику и инженерно-технические дисциплины. Многочисленные хромосомные и генные карты, записи генетических текстов, схемы строения, работы и эволюции генов и управляемых ими систем и процессов получены точными методами и сами не менее точны, чем алгоритмы и технические чертежи. И поэтому, на первый взгляд, ее профессиональный язык - лексика, стилистика и визуальные формы представления данных - далеки от красоты живой природы, открывающейся натуралистам, художникам и поэтам. Сочетание точности и логической строгости анализа с творческим предвидением структур и функций незримых объектов - задолго до их визуализации - характерно для работ великих генетиков - Г. Менделя, А. Вейсмана, Т. Моргана, Ф. Лежена, Дж. Уотсона и Ф. Крика, Ф. Жакоба и К. Моно и многих других.
Вся история генетики - своеобразный "путь вглубь генетических систем", причем "путь впотьмах", на котором нередко исследователи работали "умственными взорами": в скудном свете новых - порою, весьма фрагментарных - фактов они создавали гипотетические схемы и описания тех структур и процессов, которые удавалось опровергать или доказывать экспериментальными данными лишь многие годы спустя. Мера и число для генетического мышления необходимы, но не достаточны: "провидческие" построения сложных пространственных и временных картин требуют от исследователей и логики, и творческого воображения - качества, присущего художникам, писателям и поэтам. Именно это качество запечатлено в лексике и стиле наиболее новаторских трудов генетиков: основа четкости понятий заключается в неожиданности словосочетаний. В профессиональных текстах генетиков, словно в своеобразном магическом кристалле, непроизвольно отображались, фокусировались и сменялись не только рациональные пути развития самой генетики, но и "модные" веяния в различных областях точных, естественных и гуманитарных наук, а также в житейской практике. Предпринимаемая попытка может оказаться интересной не только для логиков, методологов и философов различных областей науки, лингвистов, филологов и психологов, но и для самих генетиков.
1. Что изучает генетика
Генетика (от греч. ??????? - происходящий от кого-то) - наука о законах и механизмах наследственности и изменчивости. В зависимости от объекта исследования классифицируют генетику растений, животных, микроорганизмов, человека и другие; в зависимости от используемых методов других дисциплин - молекулярную генетику, экологическую генетику и другие. Идеи и методы генетики играют важную роль в медицине, сельском хозяйстве, микробиологической промышленности, а также в генетической инженерии.
Первоначально генетика изучала общие законы наследственности и изменчивости на основании фенотипических данных. Понимание механизмов наследственности, то есть роли генов как элементарных носителей наследственной информации, хромосомная теория наследственности и т. д. стало возможным с применением к проблеме наследственности методов цитологии, молекулярной биологии и других смежных дисциплин.
Основы современной генетики заложены Г. Менделем, открывшим законы дискретной наследственности (1865), и школой Т. Х. Моргана, обосновавшей хромосомную теорию наследственности (1910-е гг.). В СССР в 1920-1930-х годах выдающийся вклад в генетику внесли работы Н. И. Вавилова, Н. К. Кольцова, С. С. Четверикова, А. С. Серебровского и др.
Законы Г. Менделя
Закон единообразия: гибридов первого поколения, или первый закон Менделя, утверждает, что потомство первого поколения от скрещивания устойчивых форм, различающихся по одному признаку, имеет одинаковый фенотип по этому признаку. При этом все гибриды могут иметь фенотип одного из родителей (полное доминирование), как это имело место в опытах Менделя, или, как было обнаружено позднее, промежуточный фенотип (неполное доминирование). В дальнейшем выяснилось, что гибриды первого поколения могут проявить признаки обоих родителей (кодоминирование). Этот закон основан на том, что при скрещивании двух гомозиготных по разным аллелям форм (АА и аа) все их потомки одинаковы по генотипу (гетерозиготы - Аа), а значит, и по фенотипу.
Закон расщепления, или второй закон Менделя, гласит, что при скрещивании гибридов первого поколения между собой среди гибридов второго поколения в определенных соотношениях появляются особи с фенотипами исходных родительских форм и гибридов первого поколения. Так, в случае полного доминирования выявляются 75% особей с доминантным и 25% с рецессивным признаком, т. е. два фенотипа в отношении 3:1 (рис. 1). При неполном доминировании и кодоминировании 50% гибридов второго поколения имеют фенотип гибридов первого поколения и по 25% - фенотипы исходных родительских форм, т. е. наблюдают расщепление 1:2:1. В основе второго закона лежит закономерное поведение пары гомологичных хромосом (с аллелями А и а), которое обеспечивает образование у гибридов первого поколения гамет двух типов, в результате чего среди гибридов второго поколения выявляются особи трех возможных генотипов в соотношении 1АА:2Аа:1аа. Конкретные типы взаимодействия аллелей и дают расщепления по фенотипу в соответствии со вторым законом Менделя.
Закон независимого комбинирования (наследования) признаков, или третий закон Менделя, утверждает, что каждая пара альтернативных признаков ведет себя в ряду поколений независимо друг от друга, в результате чего среди потомков второго поколения в определенном соотношении появляются особи с новыми (по отношению к родительским) комбинациями признаков. Напр., при скрещивании исходных форм, различающихся по двум признакам, во втором поколении выявляются особи с четырьмя фенотипами в соотношении 9:3:3:1 (случай полного доминирования). При этом два фенотипа имеют «родительские» сочетания признаков, а оставшиеся два - новые. Этот закон основан на независимом поведении (расщеплении) нескольких пар гомологичных хромосом (рис. 2). Например, при дигибридном скрещивании это приводит к образованию у гибридов первого поколения 4 типов гамет (АВ, Ab, AB, ab) и после образования зигот - закономерному расщеплению по генотипу и соответственно по фенотипу.
Вывод
Некоторые особенности новых технологий 21 века могут привести к большим опасностям, чем существующие средства массового уничтожения. Прежде всего, - это способность к саморепликации. Разрушающий и лавинно самовоспроизводящийся объект, специально созданный или случайно оказавшийся вне контроля, может стать средством массового поражения всех или избранных. Для этого не потребуются комплексы заводов, сложная организация и большие ассигнования. Угрозу будет представлять само знание: устройства, изобретенные и изготовленные в единичных экземплярах, могут содержать в себе все, необходимое для дальнейшего размножения, действия и даже дальнейшей эволюции - изменению своих свойств в заданном направлении. Успех всех этих отраслей науки сможет радикально поднять производительность труда и способствовать решению многих существующих проблем, прежде всего, подъему уровня жизни каждого человека, но, в то, же время, и создать новые разрушительные средства.
Список литературы
1. Горелов А.А. Концепции современного естествознания: учебное пособие. М.: Издательство Юрайт; Высшее образование, 2010. 335 с.(Основы наук).
2. Козлов Ю.Н., Костомахин Н. М. Генетика и селекция сельскохозяйственных животных: пособие. Издательство: КОЛОСС, 2009 г.264 с.
Интернет источники: 1. .
2. .
3. .
4.
Размещено на .ru
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы