Генетические алгоритмы (простой пример). Разработка программы - Курсовая работа

бесплатно 0
4.5 114
Естественный отбор в природе. Представление объектов. Кодирование их признаков. Генетические операторы. Схема функционирования алгоритма. Задачи, решаемые с его помощью. Математическая постановка задачи оптимизации, основанной на природных механизмах.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Наука - это одна из систем, которая объясняет окружающее и помогает приспособиться к новой информации, получаемой из внешней среды. Многое из того, что мы видим и наблюдаем, можно объяснить теорией эволюции через наследственность, изменение и отбор. На мировоззрение людей сильно повлияла теория эволюции Чарльза Дарвина, представленная в работе "Происхождение Видов", в 1859 году. Множество областей научного знания многим обязана революции, вызванной теорией эволюции и развития. Во многих случаях, специфические особенности развития через изменчивость и отбор все еще не бесспорные, однако, основные механизмы объясняют невероятно широкий спектр явлений, наблюдаемые в Природе."XIX веке Чарльз Дарвин совершил кругосветное плавание, собирая информацию для теории эволюции на основе естественного отбора, при котором выживает сильнейший. Мог ли он предполагать, что сто лет спустя математики будут использовать эту теорию для решения задачи об оптимальном маршруте кругосветного путешествия с остановками на многих маленьких островах?.." (Автор: РОСС КЛЕМЕНТ. Ключевую роль в эволюционной теории играет естественный отбор. Его суть состоит в том, что наиболее приспособленные особи лучше выживают и приносят больше потомков, чем менее приспособленные. Поэтому очень важно понять, каким образом происходит наследование, то есть как свойства потомка зависят от свойств родителей.Из биологии мы знаем, что любой организм может быть представлен своим фенотипом, который фактически определяет, чем является объект в реальном мире, и генотипом, который содержит всю информацию об объекте на уровне хромосомного набора. Таким образом, для решения задач нам необходимо представить каждый признак объекта в форме, подходящей для использования в генетическом алгоритме. Все дальнейшее функционирование механизмов генетического алгоритма производится на уровне генотипа, позволяя обойтись без информации о внутренней структуре объекта, что и обуславливает его широкое применение в самых разных задачах. В наиболее часто встречающейся разновидности генетического алгоритма для представления генотипа объекта применяются битовые строки. Ген представляет собой битовую строку, чаще всего фиксированной длины, которая представляет собой значение этого признака.Как известно в теории эволюции важную роль играет то, каким образом признаки родителей передаются потомкам. В генетических алгоритмах за передачу признаков родителей потомкам отвечает оператор, который называется скрещивание (его также называют кроссовер или кроссинговер). Этот оператор определяет передачу признаков родителей потомкам. o потомок определяется как конкатенация части первого и второго родителя. Итак, рассмотрим все же операторы по порядку: 1) кроссинговер - создание структуры, основанной на двух структурах - заменой одной части первой структуры на ту же область во второй.Вычислить приспособленность каждой особи и популяции в целом (также иногда называемую термином фиттнес). С определенной вероятностью (вероятностью кроссовера) выбрать вторую особь из популяции и произвести оператор кроссовера. Первый подход самый простой - это случайный выбор родительской пары ("панмиксия"), когда обе особи, которые составят родительскую пару, случайным образом выбираются из всей популяции, причем любая особь может стать членом нескольких пар. Его суть состоит в том, что "родителями" могут стать только те особи, значение приспособленности которых не меньше среднего значения приспособленности по популяции, при равной вероятности таких кандидатов составить брачную пару. Однако изза быстрой сходимости селективный выбор родительской пары не подходит тогда, когда ставиться задача определения нескольких экстремумов, поскольку для таких задач алгоритм, как правило, быстро сходится к одному из решений.Но для решения каких задач реализуются эти алгоритмы? Итак, в этой главе нами будут рассмотрены задачи оптимизации, их математическая постановка и пути решения.Постановка задачи оптимизации включает в себя множество допустимых решений и числовую функцию, определенную на этом множестве, которая называется целевой функцией. Нельзя отождествлять критерий (критерии) оптимальности и целевую функцию. Чтобы решить задачу минимизации функции на множестве, необходимо найти такой вектор (а также соответствующее значение целевой функции), чтобы неравенство: выполнялось для всех.Разработать программу, реализующую алгоритм стека (20 элементов). Задача решается в двух вариантах: статическом (на основе массива структур) и динамическом. В качестве элемента стека выбрать структуру, соответствующую индивидуальному варианту. Предусмотреть заполнение стека из файла (подготовить файл на 20 элементов). Предусмотреть многоуровневое меню: 1) Заполнение стека a) с консоли (циклически) b) из файла (выбор файла, тек. папка, любая папка)Стек в программе организован с помощью класса-контейнера stack. Интерфейс составляют объявления функций push (поместить в стек), pop (извлечь из стека), get_amount (получе

План
Содержание

Введение

1. Теоретический вопрос

1.1 Естественный отбор в природе

1.2 Представление объектов. Кодирование признаков

1.3 Основные генетические операторы

1.4 Схема функционирования генетического алгоритма

1.5 Задачи, решаемые с помощью генетических алгоритмов

1.6 Математическая постановка задачи оптимизации

2. Практический раздел

2.1 Постановка задачи

2.2 Описание программы

2.3 Контрольные примеры

2.4 Схемы алгоритмов

Заключение

Список использованной литературы

Приложение 1 (программа со стеком на основе массива)

Приложение 2 (программа со стеком на основе списка)

Введение
Природа поражает своей сложностью и богатством проявлений. Среди примеров можно назвать сложные социальные системы, иммунные и нейронные системы, сложные взаимосвязи между видами. Они - всего лишь некоторые из чудес, ставшие очевидными при глубоком исследовании природы вокруг нас. Наука - это одна из систем, которая объясняет окружающее и помогает приспособиться к новой информации, получаемой из внешней среды. Многое из того, что мы видим и наблюдаем, можно объяснить теорией эволюции через наследственность, изменение и отбор.

На мировоззрение людей сильно повлияла теория эволюции Чарльза Дарвина, представленная в работе "Происхождение Видов", в 1859 году. Множество областей научного знания многим обязана революции, вызванной теорией эволюции и развития. Но Дарвин, подобно многим современникам, предполагающим, что в основе развития лежит естественный отбор, не мог не ошибаться. Например, он не смог показать механизм наследования, при котором поддерживается изменчивость. Однако Дарвин обнаружил главный механизм развития: отбор в соединении с изменчивостью. Во многих случаях, специфические особенности развития через изменчивость и отбор все еще не бесспорные, однако, основные механизмы объясняют невероятно широкий спектр явлений, наблюдаемые в Природе. Поэтому не удивительно, что ученые, занимающиеся компьютерными исследованиями, в поисках вдохновения обратились к теории эволюции. Возможность того, что вычислительная система, наделенная простыми механизмами изменчивости и отбора, могла бы функционировать по аналогии с законами эволюции в естественных системах, была очень привлекательной. Эта надежда является причиной появления ряда вычислительных систем, построенных на принципах естественного отбора. Итак, в природе постоянно происходит процесс решения задач оптимизации. Задачи оптимизации - наиболее распространенный и важный для практики класс задач. Их приходится решать каждому из нас либо в быту, распределяя свое время между различными делами, либо на работе, добиваясь максимальной скорости работы программы или максимальной доходности компании - в зависимости от должности. Благодаря открытиям последних ста лет современной науке известны все основные механизмы эволюции, связанные с генетическим наследованием. Эти механизмы достаточно просты по своей идее, но остроумны (если к природе применимо это слово) и эффективны. Удивительно, но простое моделирование эволюционного процесса на компьютере позволяет получить решения многих практических задач. Такие модели получили название "генетические алгоритмы" и уже широко применяются в различных областях.

В процессе изучения различных подходов к решению задач оптимизации нами выдвигается гипотеза что, решение задач оптимизации возможно с помощью генетических алгоритмов.

Объектом изучения данной курсовой работы являются генетические алгоритмы.

Предмет изучения - применение генетических алгоритмов для нахождения решения оптимизационной задачи.

Методы исследования: o сбор и анализ литературных источников по данной теме;

o изучение особенностей создания и использования генетических алгоритмов;

o моделирование работы генетического алгоритма на компьютере применимо к нахождению решения задачи оптимизации.

Целью данной курсовой работы является разработка электронного пособия, в котором поэтапно описывается решение задачи о нахождении кратчайшего маршрута в существующей системе дорог.

Задачи: 1. Проанализировать возможности генетических алгоритмов;

2. Изучить особенности генетических алгоритмов;

3. Создание электронного пособия по основам генетических алгоритмов.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?