Характеристика и сущность генетической инженерии. Создание с помощью методов генетической инженерии высокоактивных продуцентов лекарственных веществ. Способы внедрения векторов в прокариотические или эукариотические клетки. Генная инженерия в медицине.
После первых успешных экспериментов с рекомбинацией молекул ДНК в пробирке появились первые сомнения и опасения, не принесет ли генная инженерия вред природе и человечеству. Этот процесс получил название рекомбинации, и в клетке чаще всего он может происходить только между гомологичными хромосомами, так как комплементарные по своей структуре молекулы ДНК притягиваются друг к другу и обмениваются генетическими детерминантами, в результате чего образуется дочерняя хромосома, содержащая элементы структуры от двух родительских хромосом. Плазмиды обладают способностью к автономной от хромосомы репликации, поэтому плазмиды содержатся в клетке в виде нескольких копий. Созданы трансгенные высшие организмы (многие растения, некоторые рыбы и млекопитающие) в клетках которых успешно функционируют гены совершенно других организмов. Плазмиды, которые используются в генной инженерии, имеют очень важное свойство: они содержат так называемый маркерный ген, например ген, сообщающий клетке устойчивость к определенному антибиотику.Совершенно ясно, что главное при разработке правил и законов, регулирующих применение генных технологий - это создать рациональные концепции оценки риска. Первый шаг в этом направлении - установить, какие именно опасности могут возникнуть и как их избежать. Уменьшить риск можно, если определить категории опасности патогенов и использовать для работы с ними соответствующее защитное оборудование.
План
Содержание
Введение
Генетическая инженерия. Характеристика. Сущность. Создание с помощью методов генетической инженерии высокоактивных продуцентов лекарственных веществ
Сущность генной инженерии
Генная инженерия в медицине
Заключение
Список использованной литературы генетический инженерия лекарственный клетка
Введение
В 1972 году появилась первая публикация, в которой сообщалось о получении in vitro рекомбинантной ДНК, состоящей из фрагментов разных молекул ДНК: вирусной, бактериальной и фаговой. Работа была выполнена американским ученым Полом Бергом с сотрудниками и ознаменовала рождение новой отрасли молекулярной биологии генетической (генной) инженерии. Генетическая инженерия (генная инженерия) - совокупность приемов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.
Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.
А.А. Баев был первым в нашей стране ученым, который поверил в перспективность генной инженерии и возглавил исследования в этой области. Генетическая, или генная, инженерия, по его определению, это конструирование in vitro функционально активных генетических структур (рекомбинантных ДНК), или, иначе, создание искусственных генетических программ. Генная инженерия имеет целью изучение интимных механизмов функционирования генетического аппарата эукариот, включая человека, что другими приемами сделать невозможно. Вместе с тем, генная инженерия ставит перед собой обширные практические задачи, немало из которых уже решено. Прежде всего, это получение путем бактериального синтеза ряда лекарственных средств, например инсулина, интерферонов. Важнейшим достижением является создание диагностических препаратов, в частности, для выявления такого опасного заболевания, как СПИД. Получение так называемых трансгенных растений открывает принципиально новые возможности для растениеводства в создании сельскохозяйственных культур, устойчивых к экстремальным воздействиям и инфекционным поражениям. Это далеко не полный перечень практических свершений генной инженерии.
После первых успешных экспериментов с рекомбинацией молекул ДНК в пробирке появились первые сомнения и опасения, не принесет ли генная инженерия вред природе и человечеству. В июле 1974 года несколько крупных ученых обратились к научной общественности с предложением наложить мораторий на работы с рекомбинантными ДНК in vitro. В феврале 1975 года в Калифорнии на Асиломарской конференции собрались 140 ученых разных стран, работающих в области генной инженерии. Всесторонне изучив результаты и возможные последствия, ученые пришли к выводу, что потенциальные опасности невелики, так как рекомбинантные штаммы в природных условиях нежизнеспособны и их бесконтрольное распространение маловероятно. Было решено прервать мораторий и продолжить исследования с соблюдением специально разработанных правил. Сегодня мы можем отметить, что почти за четверть века своего существования генная инженерия не причинила никакого вреда самим исследователям, не принесла ущерба ни природе, ни человеку. Свершения генной инженерии как в познании механизмов функционирования организмов, так и в прикладном плане весьма внушительны, а перспективы поистине фантастичны.
Генетическая инженерия. Характеристика. Сущность. Создание с помощью методов генетической инженерии высокоактивных продуцентов лекарственных веществ
Молекулярная биология заявила о себе в качестве самостоятельной науки в 1953 году, когда Джеймс Уотсон и Френсис Крик открыли знаменитую двойную спираль ДНК и постулировали матричный механизм ее синтеза.
В соответствии с этим механизмом двойная спираль ДНК при репликации разделяется и каждая цепь служит матрицей для синтеза дочерней цепи, которая по своей первичной структуре является зеркальным отражением матрицы. В результате такого матричного синтеза образуются две совершенно идентичные двуспиральные молекулы ДНК, каждая из которых передается в дочерние клетки. Последние получают всю генетическую программу от родительской клетки. По такому же матричному механизму осуществляется синтез РНК, только РНК синтезируется в виде односпиральной цепи, которая комплементарна ДНК-матрице. Этот процесс получил название транскрипции. А процесс синтеза белка на РНК-матрице (МРНК) происходит на рибосомах, и структура белка соответствует структуре МРНК. Это очень сложный процесс, он называется трансляцией, и в нем участвует транспортная РНК (ТРНК). Она доставляет в рибосому аминокислоты и адаптирует язык МРНК к языку белка. Таким образом, процесс матричного синтеза ДНК определяет передачу наследственной информации от родительской клетки в дочернюю. В процессе матричного синтеза РНК происходит передача информации (генетического кода данного белка) от ДНК на МРНК, а МРНК переносит информацию на рибосому, где она реализуется в виде конкретной структуры белка.
При половом процессе может происходить обмен участками между двумя хромосомами (молекулами ДНК) от двух скрещиваемых индивидуумов. Этот процесс получил название рекомбинации, и в клетке чаще всего он может происходить только между гомологичными хромосомами, так как комплементарные по своей структуре молекулы ДНК притягиваются друг к другу и обмениваются генетическими детерминантами, в результате чего образуется дочерняя хромосома, содержащая элементы структуры от двух родительских хромосом. Открытый недавно процесс негомологичной рекомбинации осуществляется только в том случае, если в одной из взаимодействующих молекул ДНК есть гены, кодирующие специальные ферменты разрезания ДНК.
Следующее важное открытие, предопределившее возникновение генной инженерии, обнаружение в бактериальных клетках внехромосомных маленьких кольцевых молекул ДНК. Эти минихромосомы впервые были обнаружены в начале 50-х годов и получили название плазмид. Плазмиды обладают способностью к автономной от хромосомы репликации, поэтому плазмиды содержатся в клетке в виде нескольких копий. Различаются плазмиды по генетическим детерминантам. Очень важно, что плазмиды изза своих малых размеров могут быть выделены из клетки в неповрежденном, нативном состоянии.
В 1970 году американцы Келли и Смит с сотрудниками выделили первую рестриктазу - фермент, который вызывает гидролиз ДНК в строго определенных местах с образованием так называемых липких концов. Существование таких ферментов - рестриктаз было доказано в опытах швейцарцев Линна и Арбера в конце 60-х годов. В настоящее время описано множество таких ферментов, которые применяются в генной инженерии.
Таким образом, к началу 70-х годов были сформулированы основные принципы функционирования нуклеиновых кислот и белков в живом организме и созданы теоретические предпосылки генной инженерии.
Методы генной инженерии.
Методы генной инженерии основаны на получении фрагментов исходной ДНК и их модификации.
Для получения исходных фрагментов ДНК разных организмов используется несколько способов: - Получение фрагментов ДНК из природного материала путем разрезания исходной ДНК с помощью специфических нуклеаз (рестриктаз).
- Прямой химический синтез ДНК, например, для создания зондов.
- Синтез комплементарной ДНК (КДНК) на матрице МРНК с использованием фермента обратной транскриптазы (ревертазы).
Выделенные участки ДНК встраивают в векторы переноса ДНК. Векторы ДНК - это небольшие молекулы ДНК, способные проникать в другие клетки и реплицироваться в них.
В состав вектора ДНК входит не менее трех групп генов: 1. Целевые гены, которые интересуют экспериментатора.
2. Гены, отвечающие за репликацию вектора, его интеграцию в ДНК клетки-хозяина и экспрессию требуемых генов.
3. Гены-маркеры (селективные, репортерные гены), по деятельности которых можно судить об успешности трансформации (например, гены устойчивости к антибиотикам или гены, отвечающие за синтез белков, светящихся в ультрафиолетовом свете).
Для внедрения векторов в прокариотические или эукариотические клетки используют различные способы, например: 1. Биотрансформация. Используются векторы, способные сами проникать в клетки. Частным случаем биотрансформации является агробактериальная трансформация.
2. Микроинъекции. Используются, если клетки, подлежащие трансформации, достаточно крупные (например, икринки, пыльцевые трубки).
3. Биобаллистика (биолистика). Векторы «вбивают» в клетки с помощью специальных «пушек».
4. Комбинированные методы, например, сочетание агробактериальной трансформации и биолистики.
В качестве векторов часто используют плазмиды (кольцевые молекулы ДНК прокариотических клеток), а также ДНК вирусов. У эукариот в качестве векторов используют мобильные генетические элементы - участки хромосом, способные образовывать множество копий и встраиваться в другие хромосомы. В составе одного вектора можно комбинировать различные фрагменты ДНК (различные гены). Вновь образованные фрагменты ДНК называют рекомбинантными.
Векторы переноса ДНК вместе с внедренными фрагментами ДНК различными способами вводят в прокариотические или эукариотические клетки и получают трансгенные клетки. В ходе размножения трансгенных клеток происходит клонирование требуемых фрагментов ДНК, в частности, отдельных генов. Клонированные гены эукариот подвергают различным модификациям (например, добавляют перед ними определенные промоторы) и внедряют в клетки-продуценты. Основная проблема состоит в том, чтобы чужеродные гены экспрессировались постоянно, то есть должен происходить синтез необходимых веществ без ущерба для клетки-хозяина.
Практические достижения современной генной инженерии заключаются в следующем: - Созданы банки генов, или клонотеки, представляющие собой коллекции клонов бактерий. Каждый из этих клонов содержит фрагменты ДНК определенного организма (дрозофилы, человека и других).
- На основе трансформированных штаммов вирусов, бактерий и дрожжей осуществляется промышленное производство инсулина, интерферона, гормональных препаратов. На стадии испытаний находится производство белков, позволяющих сохранить свертываемость крови при гемофилии, и других лекарственных препаратов.
- Созданы трансгенные высшие организмы (многие растения, некоторые рыбы и млекопитающие) в клетках которых успешно функционируют гены совершенно других организмов. Широко известны генетически защищенные генно-модифицированные растения (ГМР), устойчивые к высоких дозам определенных гербицидов, а также Bt-модифицированные растения, устойчивые к вредителям. Среди трансгенных растений лидирующие позиции занимают: соя, кукуруза, хлопок, рапс.
Сущность генной инженерии
Как уже указывалось, процесс рекомбинации в организме (in vivo) возможен в большинстве случаев между гомологичными молекулами ДНК. Однако оказалось, что in vitro притягивание и взаимодействие (гибридизация) молекул ДНК возможно, если они будут иметь небольшие комплементарные односпиральные участки из четырех и более нуклеотидов на концах молекул (в настоящее время описаны двенадцатинуклеотидные липкие концы). Такие комплементарные односпиральные последовательности получили название липких концов, так как две молекулы ДНК могут соединиться (слипнуться) этими концами. Таким образом, если в пробирку поместить самые разные молекулы ДНК с одинаковыми липкими концами, то будет происходить рекомбинация, даже если вся их структура очень различается.
Как же получить гетерогенные молекулы ДНК с одинаковыми липкими концами? Для этого используются ферменты - рестриктазы, которые "умеют" разрезать молекулы ДНК так, что у них образуются одинаковые (комплементарные) липкие концы. Происходит такое разрезание в участках, несущих особым образом повторяющиеся последовательности нуклеотидов. Рестриктазы узнают эти последовательности и разрезают ДНК в точках повтора: в результате односпиральный конец одной молекулы оказывается комплементарным (липким) концу другой молекулы.
Теперь, чтобы полученные в пробирке генные конструкции заработали, необходимо их ввести в подходящую бактериальную клетку. Вот тут-то и пригодятся плазмиды. В генной инженерии их называют векторами (повозки, которые доставляют в клетку клонируемый ген). Для этого плазмиды тоже режут рестриктазами, чтобы получить односпиральные концы, комплементарные концам генов, проводят гибридизацию гена и плазмиды в пробирке, а затем рекомбинантную плазмиду (ее называют еще химерной) вводят в клетку. Плазмиды, которые используются в генной инженерии, имеют очень важное свойство: они содержат так называемый маркерный ген, например ген, сообщающий клетке устойчивость к определенному антибиотику. Благодаря этому клетки, несущие рекомбинантную плазмиду, легко отделить от клеток, не имеющих такой плазмиды. Для этого бактерии высевают на среду с антибиотиком, на которой будут расти только клетки с плазмидой - так называемые рекомбинантные клетки, а процедура их отбора получила название молекулярного клонирования, так как рекомбинантные клетки представляют собой потомство одной молекулы ДНК.
В рекомбинантных клетках химерная плазмида, несущая чужеродный ген, начинает функционировать, то есть совершаются процессы репликации, транскрипции и трансляции нового введенного в клетку гена и синтезируется продукт этого гена, который в природных клетках никогда ранее не мог образоваться. Таким образом, in vitro проводится только рекомбинация, а все остальные превращения с химерной плазмидой происходят в клетке так же, как и со своими собственными генами. Иными словами, теперь можно ввести в бактериальную клетку ген, полученный из любого организма слона, носорога, обезьяны и даже человека, и заставить чужеродный ген там функционировать.
Получение лекарственных веществ на основе применения биологического синтеза
Одним из перспективных путей получения лекарственных веществ является биотехнология с использованием методов генной инженерии. Ее основу составляют генетические ресурсы, заложенные в клетках растений, животных и микроорганизмов. Современный уровень развития химии, биологии и других наук позволяет изменять молекулы, входящие в состав биологических систем, и создавать их варианты, которые не могли появиться в процессе естественной эволюции.
Биотехнология - это технология получения различных продуктов из живых клеток различного происхождения. Успешное развитие биологии значительно обогатило такие направления биотехнологии, как техническая биохимия, микробиология, и привело к возникновению принципиально новых, перспективных направлений - генетической и клеточной инженерии. Объектами биотехнологии являются культивируемые ткани и клетки животных и растений (высших организмов), а также микроорганизмы, созданные методами генной инженерии, т.е. путем переноса генетического материала от одних организмов к другим, в том числе от высших к одноклеточным.
Понятие «клеточная инженерия» включает использование либо самих культивируемых клеток, либо различных манипуляций с ними для создания новых технологий. Клеточное конструирование осуществляют гибридизацией или введением в них чужеродного генетического материала (клеточных органелл, бактерий). Результатом клеточного конструирования является улучшение клеток-продуцентов в культуре или получение клеточных систем с новыми свойствами, а в случае растительных клеток - получение растений с новыми свойствами.
Биотехнология обеспечивает самые прогрессивные методы получения новых лекарственных веществ. Начиная со второй половины 70-х гг. в нашей стране и за рубежом, особенно в США, Японии, Германии, создана отрасль биотехнологии, обеспечивающая получение лекарственных веществ на основе использования генной инженерии. С помощью генной инженерии были разработаны новые штаммы микроорганизмов, позволившие получить гормональные вещества, осуществить микробиологический синтез инсулина, интерферона и других ценных веществ, синтезируемых только организмом человека.
Чрезвычайно важно, что в качестве источников сырья для биотехнологии все шире используются непищевые растительные ресурсы и отходы сельского хозяйства, пищевой промышленности. Это позволяет превратить биотехнологию в безотходное производство. Сравнительная оценка продолжительности традиционных и биотехнологических методик убедительно подтверждает преимущества последних.
Наибольший интерес для фармации представляют такие отрасли биотехнологии, как производство вторичных метаболитов, протеиновая технология, получение моноклональных антител, инженерная энзимология.
Традиционная методика получения лекарственных веществ путем выращивания растений на опытном поле требует длительного времени (1-6 мес.). Более экономично использование биотехнологической методики, основанной на выращивании каллусных и меристемных клеточных культур (7-14 дней). При получении биологически активных веществ из животных тканей традиционный способ разведения животных требует 1-9 мес., выращивание культуры клеток ткани на твердой фазе -7-10 дней. Меньше всего времени, всего 1-3 дня, требуется для получения БАВ путем культивирования микроорганизмов, так как они растут быстрее клеток растений и животных и требуют простых питательных сред.
Сущность протеиновой технологии заключается в применении генетически измененных микроорганизмов. Это позволяет значительно снизить стоимость дорогостоящих лекарственных веществ, например таких, как инсулин или интерферон, требующих для производства дефицитного природного сырья.
Получение моноклональных антител - метод иммунной биотехнологии. Он основан на создании гибридов, продуцирующих моноклональные антитела ко многим антигенам бактерий, вирусов, животных и растительных клеток. Метод позволяет получать чистые ферменты и белки.
Важной составной частью современной биотехнологии является инженерная энзимология. Одно из ее достижений - создание иммобилизованных ферментов нового типа - биокатализаторов. В отличие от природных ферментов они обладают термостабильностью, работают в широком интервале РН, могут использоваться многократно, легко отделяются от продуктов реакции. В химико-фармацевтической промышленности иммобилизованные ферменты используются для разделения рацемических смесей аминокислот, биосинтеза ряда природных веществ и их полусинтетических аналогов, в частности 6-аминопенициллановой (6-АПК) и 7-аминодезацетоксицефалоспорановой кислот.
Генная инженерия в медицине
Среди многих достижений генной инженерии, получивших применение в медицине, наиболее значительное - получение человеческого инсулина в промышленных масштабах.
Всем широко и печально известна такая болезнь, как сахарный диабет, когда организм человека утрачивает способность вырабатывать физиологически важный гормон инсулин. В результате в крови накапливается сахар и больной может погибнуть. Инсулин уже давно получают из органов животных и используют в медицинской практике. Однако многолетнее применение животного инсулина ведет к необратимому поражению многих органов пациента изза иммунологических реакций, вызываемых инъекцией чужеродного человеческому организму животного инсулина. Но даже потребности в животном инсулине до недавнего времени удовлетворялись всего на 60 - 70%. Так, в 1979 году из 6 млн. больных во всем мире только 4 млн. получали инсулин. Без лечения инсулином больные умирали. А если учесть, что среди больных диабетом немало детей, становится понятным, что для многих стран это заболевание превращается в национальную трагедию.
Генные инженеры в качестве первой практической задачи решили клонировать ген инсулина. Клонированные гены человеческого инсулина были введены с плазмидой в бактериальную клетку, где начался синтез гормона, который природные микробные штаммы никогда не синтезировали. Начиная с 1982 года фирмы США, Японии, Великобритании и других стран производят генноинженерный инсулин. Проблема решена. Из 1000 литров бактериальной культуры получают приблизительно 200 г инсулина, что равно количеству, получаемому из 1600 кг поджелудочной железы животных. Параллельно была решена проблема иммунологического поражения организмов диабетиков животным инсулином.
Производство и продажу инсулина впервые начала американская фирма Eli Lilly. Мировой рынок инсулина составляет в настоящее время более 400 млн. долларов, ежегодное потребление около 2500 кг.
Более двадцати фирм Японии и несколько американских фирм разрабатывали другой очень важный медицинский препарат - интерферон, который эффективен при различных вирусных заболеваниях и злокачественных новообразованиях. Первым из этих соединений на рынок поступил альфа - интерферон, затем бета - интерферон.
Еще один эффективный противораковый препарат - интерлейкин, производится в Японии и США. Интересно отметить, что сегодня американский рынок медицинских препаратов, полученных методами генной инженерии, сравним с такими массовыми лекарствами, как антибиотики. К 2000 году стоимость продукции, выпускаемой в США на основе генноинженерных методов, достигнет 50 млрд. долларов в год.
Около 200 новых диагностических препаратов уже введены в медицинскую практику, и более 100 генноинженерных лекарственных веществ находится на стадии клинического изучения. Среди них лекарства, излечивающие артрозы, сердечно - сосудистые заболевания, некоторые опухолевые процессы и, возможно, даже СПИД. Среди нескольких сотен генноинженерных фирм 60% работают над производством лекарственных и диагностических препаратов.
Генотерапия.
Неблагоприятная экологическая обстановка и целый ряд других подобных причин приводят к тому, что все больше детей рождается с серьезными наследственными дефектами. В настоящее время известно 4000 наследственных заболеваний, для большинства из которых не найдено эффективных способов лечения.
Генные инженеры уже внесли свой вклад в решение этой проблемы, разработав диагностические препараты, позволяющие обнаруживать генетические аномалии в период беременности, что дает возможность предотвратить рождение больного ребенка. Однако более одного процента всех новорожденных имеют генетические заболевания, которые приводят к физическим и умственным нарушениям, а также к ранней смерти.
Буквально с первых шагов генной инженерии ученые задались целью разработать методы исправления генетических повреждений путем введения в организм "здоровых" генов. В 1989 году в Национальных Институтах Здоровья США впервые была предпринята попытка применить в клинической практике генотерапию для лечения опасного заболевания "тяжелый комбинированный иммунодефицит" (ТКИД). В настоящее время генотерапия ТКИД проходит завершающую стадию клинических испытаний.
Наиболее обнадеживающие результаты ожидают в тех случаях, когда заболевание обусловлено дефектом одного гена. В этом случае полагают, что удастся вводить нормальный ген в соматические клетки прицельно в то место на хромосоме, где находится дефектный ген. При гомологичной рекомбинации введенный ген заместит дефектный. Такой однократной процедуры в ряде случаев будет достаточно, чтобы излечить болезнь. Однако на практике очень трудно проконтролировать судьбу введенной в клетки ДНК, и на одно правильное встраивание в генном приходится более 1000 случайных. Разрабатывается и другой подход, когда введенный ген не заменяет дефектный, а компенсирует его функцию, встраиваясь в хромосому в другом месте.
Исследования ведутся очень интенсивно, хотя до реализации программы лечения для большинства наследственных заболеваний предстоит еще длинный и многотрудный путь. Возможность излечения таких заболеваний путем введения нормальных генов это такая благородная задача, что в некоторых странах исследования в области генотерапии считаются наиболее приоритетными и финансируются в первую очередь.
Трансгенные растения.
Веками селекционеры работают над выведением новых сортов культурных растений, придавая им свойства, необходимые для практического использования. Достаточно сравнить цветок розы с цветком шиповника, чтобы убедиться, сколь велики достижения трудов человеческих. Правда, при этом вспоминаешь, что путь от диких предков к культурным растениям простирается на десятки тысяч лет. При этом, чем лучше сорт растения или порода животного, тем они капризнее, больше подвержены различным вирусным и микробным заболеваниям, малоустойчивы к насекомым, засухе.
И вот генные инженеры решили помочь селекционерам сделать культурные растения такими же устойчивыми к болезням и различным экстремальным воздействиям, как и их дикие предки.
С этой целью была разработана система переноса в растения различных чужих генов, которые могут сообщать растениям полезные свойства. Наиболее распространен перенос генов с помощью вируса, поражающего фитопатогенную бактерию Agrobacterium tumefaciens. Плазмида найденного в клетках A. tumefaciens способна переносить часть своей ДНК в растительные клетки. Именно в эту ДНК встраивается необходимый "полезный" ген. Растения, в хромосому которых встраивается чужой ген, называются трансгенными.
Впервые трансгенные растения были получены в 1982 году учеными из Института растениеводства в Кельне и компании Monsanto. В результате растения приобрели устойчивость к антибиотику канамицину, ингибирующему рост. В настоящее время только в компании Monsanto получено более 45 тысяч независимых линий трансгенных растений.
Одна из важных задач - получение растений, устойчивых к вирусам, так как в настоящее время не существует прямых способов борьбы с вирусными инфекциями сельскохозяйственных культур. Ученые из Университета штата Вашингтон решили, что устойчивость к вирусам можно "привить" растениям, вводя в растительные клетки гены белка оболочки вируса табачной мозаики. Эксперимент полностью подтвердил это предположение: интенсивный синтез белка оболочки любого вируса в клетках растений вызывает устойчивость к данному вирусу. В настоящее время получены трансгенные растения, способные противостоять воздействию более десятка различных вирусных инфекций. Еще одна задача связана с защитой растений от насекомых-вредителей. Применение инсектицидов не вполне эффективно, во-первых, изза их токсичности, во-вторых, потому, что дождевой водой они смываются с растений. В генноинженерных лабораториях Бельгии и США были успешно проведены работы по внедрению в растительную клетку генов, отвечающих за синтез инсектицидов бактериального происхождения. Эти гены ввели в клетки картофеля, томатов и хлопчатника. Трансгенные растения картофеля и томатов были устойчивы к колорадскому жуку, растения хлопчатника оказались устойчивыми к разным насекомым, в том числе к хлопковой совке. Применение инсектицидов было сокращено на 40 - 60%.
Генные инженеры вывели трансгенные растения с удлиненным сроком созревания плодов. Такие помидоры, например, можно снимать с куста красными, не боясь, что они перезреют при транспортировке.
Список растений, к которым успешно применены методы генной инженерии, составляет около пятидесяти видов, включая яблоню, сливу, виноград, капусту, баклажаны, огурец, пшеницу, сою, рис, рожь и много других сельскохозяйственных растений, возделывание которых в ближайшем будущем будет существенно облегчено благодаря генетическим модификациям.
Вывод
Совершенно ясно, что главное при разработке правил и законов, регулирующих применение генных технологий - это создать рациональные концепции оценки риска. Первый шаг в этом направлении - установить, какие именно опасности могут возникнуть и как их избежать. Следующий шаг - оценить степень риска. Уменьшить риск можно, если определить категории опасности патогенов и использовать для работы с ними соответствующее защитное оборудование. По мере накопления конкретных знаний о конкретных опасностях оценки следует уточнять.
Есть документы, регламентирующие применение генных технологий. Это директивы, касающиеся правил безопасной работы в лабораториях и в промышленности, а также правила внесения генетически модифицированных организмов в окружающую среду. В большинстве европейских стран, как и положено, подобные директивы включены в свод национальных законов, а это, согласимся, уже немало.
Общий вывод таков: “При осмотрительном применении генных технологий польза от них сильно перевесит риск отрицательных последствий; технологии конструирования рекомбинантных ДНК внесут существенный вклад в здравоохранение, в развитие устойчивого сельского хозяйства, в производство пищи, в очистку окружающей среды”.
Список литературы
1. Биотехнология. / Отв. редактор А.А. Баев. М.: Наука, 1984.
2. Егоров Н.С. и др. Биотехнология: проблемы и перспективы. М.: Высшая школа, 1987.
3. Лещинская И.Б. Генная инженерия, 1996.
4. Уотсон Дж. и др. Рекомбинантные ДНК. М.: Мир, 1986.
5. Верма А.М. Генотерапия. // В мире науки. 1991.
6. Сассон А. Биотехнология. М.: Мир, 1987.
Размещено на .ru
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы