Структура и периферийные устройства микроконтроллеров AVR. Способы генерации аналоговых сигналов с помощью ШИМ и R-2R матрицы. Хранение значений синусоиды в памяти программ (Flash ПЗУ) оперативном запоминающем устройстве, энергонезависимой памяти EEPROM.
Цифровые микросхемы к настоящему времени достигли впечатляющего быстродействия при приемлемом токе потребления. Исключением являются микросхемы, построенные на основе КМОП технологии (например, микросхемы серий 1564, 74HC, 74AHC). В этих микросхемах потребляемый ток прямо пропорционален скорости переключения логических вентилей в микросхеме. Т.е. микросхема автоматически увеличивает ток потребления, если от нее требуется большее быстродействие, поэтому в настоящее время подавляющее большинство микросхем выпускается именно по этой технологии. Возникает вопрос, раз микросхемы достигли такого высокого быстродействия, то нельзя ли использовать одну и ту же микросхему многократно?Микроконтроллеры AVR содержат: быстрый RISK-процессор, два типа энергонезависимой памяти (Flash-память программ и память данных EEPROM), оперативную память RAM, порты ввода/вывода и различные периферийные интерфейсные схемы. Сердцем микроконтроллеров AVR является 8-битное микропроцессорное ядро или центральное процессорное устройство (ЦПУ), построенное на принципах RISC-архитектуры. По системному тактовому сигналу из памяти программ в соответствии с содержимым счетчика команд (Program Counter - PC) выбирается очередная команда и выполняется АЛУ. Во время выбора команды из памяти программ происходит выполнение предыдущей выбранной команды, что и позволяет достичь быстродействия 1 MIPS на 1 МГЦ. Отличие между регистрами и оперативной памятью состоит в том, что с регистрами можно производить любые операции (арифметические, логические, битовые), а в оперативную память можно лишь записывать данные из регистров.Периферия микроконтроллеров AVR включает: порты (от 3 до 48 линий ввода и вывода), поддержку внешних прерываний, таймеры-счетчики, сторожевой таймер, аналоговые компараторы, 10-разрядный 8-канальный АЦП, интерфейсы UART, JTAG и SPI, устройство сброса по понижению питания, широтно-импульсные модуляторы. Мощные выходные драйверы обеспечивают токовую нагрузочную способность 20 МА на линию порта (втекающий ток) при максимальном значении 40 МА, что позволяет, например, непосредственно подключать к микроконтроллеру светодиоды и биполярные транзисторы. Это позволяет избежать необходимости иметь копию содержимого порта в памяти для безопасности и повышает скорость работы микроконтроллера при работе с внешними устройствами, особенно в условиях внешних электрических помех. При возникновении события, вызывающего прерывание, микроконтроллер сохраняет содержимое счетчика команд, прерывает выполнение центральным процессором текущей программы и переходит к выполнению подпрограммы обработки прерывания. Микроконтроллеры AVR имеют в своем составе от 1 до 4 таймеров/счетчиков с разрядностью 8 или 16 бит, которые могут работать и как таймеры от внутреннего источника тактовой частоты, и как счетчики внешних событий.Последовательный периферийный трехпроводный интерфейс SPI (Serial Peripheral Interface) предназначен для организации обмена данными между двумя устройствами.Этот интерфейс позволяет объединить вместе до 128 различных устройств с помощью двунаправленной шины, состоящей из линии тактового сигнала (SCL) и линии данных (SDA).Внутренний тактовый генератор AVR может запускаться от нескольких источников опорной частоты (внешний генератор, внешний кварцевый резонатор, внутренняя или внешняя RC-цепочка). Максимальная рабочая частота определяется конкретным типом микроконтроллера и указывается Atmel в его характеристиках, хотя практически любой AVR-микроконтроллер с заявленной рабочей частотой, например, в 10 МГЦ при комнатной температуре легко может быть "разогнан" до 12 МГЦ и выше. Если схема включена, то при снижении питания ниже некоторого значения она переводит микроконтроллер в состояние сброса. Выполняя команды за один цикл, ATTINY2313 достигает производительности 1 MIPS при частоте задающего генератора 1 МГЦ, что позволяет разработчику оптимизировать отношение потребления к производительности. ATTINY2313 имеет следующие характеристики: 2 КБ программируемой в системе Flash память программы, 128 байтную EEPROM память данных, 128 байтное SRAM (статическое ОЗУ), 18 линий ввода - вывода общего применения, 32 рабочих регистра общего назначения, однопроводный интерфейс для встроенного отладчика, два гибких таймера/счетчика со схемами сравнения, внутренние и внешние источники прерывания, последовательный программируемый USART, универсальный последовательный интерфейс с детектором стартового условия, программируемый сторожевой таймер со встроенным генератором и три программно инициализируемых режима пониженного потребления.Для получения из цифрового ШИМ-сигнала сигнала синусоидальной формы на выходе должен быть предусмотрен аналоговый фильтр. ШИМ в сочетания с аналоговым фильтром может использоваться для генерации аналоговых выходных сигналов, т.е. в качестве цифроаналогового преобразователя (ЦАП). Для генерации различных аналоговых уровней регулируется заполнение импульсов и, таким образом, изменяется длительность импульсов. Усреднение аналогово
План
Содержание
Введение
1. Микроконтроллеры AVR. Назначение и внутренняя структура
1.2.11 Сброс при снижении напряжения питания (BOD)
2. Описание ATTINY2313
3. Способы генерации аналоговых сигналов
3.1 Генерация аналоговых сигналов с помощью ШИМ
3.2 Генерация аналоговых сигналов с помощью R-2R матрицы
4. Разработка программ генерации синусоидального напряжения
4.1 Хранение значений синусоиды в памяти программ
4.2 Хранение значений синусоиды в ОЗУ. Применение косвенной адресации
4.3 Хранение значений синусоиды в энергонезависимой памяти (EEPROM)
Заключение
Библиографический список
Введение
Цифровые микросхемы к настоящему времени достигли впечатляющего быстродействия при приемлемом токе потребления. Наиболее быстрые из цифровых микросхем обладают скоростью переключения порядка 3..5 нс. (серия микросхем 74ALS). В то же время приходится платить за быстродействие микросхем повышенным током потребления. Исключением являются микросхемы, построенные на основе КМОП технологии (например, микросхемы серий 1564, 74HC, 74AHC). В этих микросхемах потребляемый ток прямо пропорционален скорости переключения логических вентилей в микросхеме. Т.е. микросхема автоматически увеличивает ток потребления, если от нее требуется большее быстродействие, поэтому в настоящее время подавляющее большинство микросхем выпускается именно по этой технологии.
Часто цифровые устройства выполняют достаточно сложные задачи. Возникает вопрос, раз микросхемы достигли такого высокого быстродействия, то нельзя ли использовать одну и ту же микросхему многократно? Тогда можно будет обменивать быстродействие микросхем на сложность решаемой задачи. Именно этот обмен и позволяют осуществлять микропроцессоры. В этих микросхемах многократно используется одно и то же устройство - АЛУ (арифметико-логическое устройство). Поэтому возможен обмен предельного быстродействия микроконтроллера на сложность реализуемого устройства. Именно по этой причине стараются максимально увеличить быстродействие микропроцессоров, что позволяет реализовывать все более сложные устройства в одном и том же объеме.
Еще одной причиной широкого распространения микропроцессоров стало то, что микропроцессор - это универсальная микросхема, которая может выполнять практически любые функции. Универсальность обеспечивает широкий спрос на эти микросхемы, а значит массовость производства. Стоимость же микросхем обратно пропорциональна массовости их производства, то есть микропроцессоры становятся дешевыми микросхемами и тем самым еще больше увеличивают спрос.
В наибольшей степени все вышеперечисленные свойства проявляются в однокристальных МИКРОЭВМ или как их чаще называют по области применения: микроконтроллерах. В микроконтроллерах на одном кристалле объединяются все составные части компьютера: микропроцессор (часто называют ядро микроконтроллера), ОЗУ, ПЗУ, таймеры и порты ввода-вывода.
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы