Газотурбинные установки электростанций - Реферат

бесплатно 0
4.5 74
Устройство газотурбинной установки. Простейшая схема газотурбинного двигателя. Принципиальная схема простой газотурбинной установки непрерывного горения. Схема многоступенчатого осевого компрессора. Основные преимущества газотурбинных электростанций.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
В некоторых пиковых ГТУ в качестве источников газа для турбины, вращающей электрический генератор, применяют авиационные турбореактивные двигатели, отслужившие свой срок в авиации Значительной экономии следует ожидать от парогазовых установок (ПГУ), в которых совместно работают паротурбинные газотурбинные установки. В камеру сгорания первого типа топливо и окислитель (воздух) подавались непрерывно, их горение также поддерживалось непрерывно, а давление не изменялось. После турбины газ поступает в промежуточный теплообменник 5(регенератор), в котором он подогревает воздух, а затем охлаждается в охладителе 6, поступает в компрессор 1, и цикл повторяется. Принцип работы газотурбинного двигателя: всасывание и сжатие воздуха в компрессоре, подача его в камеру сгорания, смешение сжатого воздуха с топливом для образования топливо-воздушной смеси, воспламенение полученной топливо-воздушной смеси (ТВС) при помощи свечи зажигания, расширение газов при сгорании топливо-воздушной смеси, что формирует вектор давления газа, направленный в сторону меньшего сопротивления (в направлении лопаток турбины), передача энергии (давления) газа лопатками турбины на диск или вал, в котором эти лопатки закреплены, приводя во вращение диск (вал)турбины и, вследствие этого, передачу крутящего момента по валу на диск компрессора. Увеличение количества подаваемого топлива (добавление "газа") вызывает генерирование большего количества газов высокого давления, что, в свою очередь, ведет к увеличению числа оборотов турбины и диска(ов) компрессора и, вследствие этого, увеличению количества нагнетаемого воздуха и его давления, что позволяет подать в камеру сгорания и сжечь больше топлива.

Введение
История газотурбинных установок начинается с 1791, когда английский изобретатель Дж. Барбер впервые предложил идею создания ГТД с газогенератором, поршневым компрессором, камерой сгорания и газовой турбиной. Которую воплотил в жизнь русский инженер П. Д. Кузьминский в 1900, построив газотурбинный двигатель со сгоранием топлива при постоянном давлении, предназначенный для небольшого катера. В этом ГТД была применена многоступенчатая газовая турбина. Испытания не были завершены изза смерти Кузьминского. В 1900-04 немецкий инженер Ф. Штольце пытался создать ГТД, но неудачно. В 1906 французский инженер Р. Арманго и Ш. Лемаль построили ГТД, работавший на керосине, со сгоранием топлива при постоянном давлении, но изза низкого кпд он не получил промышленного применения. В 1906 русский инженер В. В. Караводин спроектировал, а в 1908 построил бескомпрессорный ГТД с 4 камерами прерывистого сгорания и газовой турбиной, который при 10 000 об/мин развивал мощность 1,2 квт (1,6 л. с.). В 1908 по проекту немецкий инженера Х. Хольцварта был построен ГТД прерывистого горения. К 1933 кпд ГТД с прерывистым горением составлял 24%, однако они не нашли широкого промышленного применения.

В России в 1909 инженер Н. В. Герасимов получил патент на ГТД, который был использован им для создания реактивной тяги (турбореактивный ГТД); в 1913 М. Н. Никольской спроектировал ГТД мощностью 120 квт (160 л. с.) с трехступенчатой газовой турбиной; в 1923 В. И. Базаров предложил схему ГТД, близкую к схемам современных турбовинтовых двигателей; в 1930 В. В. Уваров при участии Н. Р. Брилинга спроектировал, а в 1936 построил ГТД с центробежным компрессором. В 30-е гг. большой вклад в создание авиационных ГТД внесли советский конструктор А. М. Люлька (ныне академик АН СССР), английский изобретатель Ф. Уиттл, немецкий инженер Л. Франц и др. В 1939 в Швейцарии был построен и испытан ГТД мощностью 4000 квт (5400 л. с.). Его создателем был словацкий ученый А. Стодола. В 1939 в Харькове, в лаборатории, руководимой В. М. Маковским, изготовлен ГТД мощностью 736 квт (1000 л. с.). В качестве топлива использован газ, получаемый при подземной газификации угля. Испытания этого ГТД в Горловке были прерваны Великой Отечественной войной. Большой вклад в развитие и совершенствование ГТД внесли советские ученые и конструкторы: А. Г. Ивченко, В. Я. Климов, Н. Д. Кузнецов, И. И. Кулагин, Т. М. Мелькумов, А. А. Микулин, Б. С. Стечкин, С. К. Туманский, Я. И. Шнеэ, Л. А. Шубенко-Шубин и др. За рубежом в 40-е гг. над созданием ГТД работали фирмы «Юнкерс», «БМВ» (Германия), «Бристол Сидли», «Роллс-Ройс» (Великобритания), «Дженерал электрик» и «Дженерал моторс» (США), «Рато» (Франция) и др. ( http://www.gigavat.com/gtu_history.php)

В настоящее время газотурбинные установки являются основным видом двигателей, используемых в авиации, что обусловлено простотой их конструкции, способностью быстро набирать нагрузку, большой мощностью при малой массе, возможностью полной автоматизации управления. Самолет с газотурбинным двигателем впервые совершил полет в 1941 г.

В энергетике ГТУ работают в основном в то время, когда резко увеличивается потребление электроэнергии, т. е. во время пиков нагрузки. Хотя кпд ГТУ ниже кпд паротурбинных установок (при мощности 20-100 МВТ кпд ГТУ достигает 20-30%), использование их в пиковом режиме оказывается выгодным, так как пуск занимает гораздо меньше времени.

В некоторых пиковых ГТУ в качестве источников газа для турбины, вращающей электрический генератор, применяют авиационные турбореактивные двигатели, отслужившие свой срок в авиации Значительной экономии следует ожидать от парогазовых установок (ПГУ), в которых совместно работают паротурбинные газотурбинные установки. Они позволяют на несколько процентов сократить расход топлива по сравнению с лучшими паротурбинными установками.

Наряду с паротурбинными установками и двигателями внутреннего сгорания ГТУ применяют в качестве основных двигателей на передвижных электростанциях.

В доменном производстве энергия уходящих газов используется в газовых турбинах, предназначенных для привода воздушных компрессоров, подающих воздух в рабочее пространство домен.В технологических процессах нефтеперегонных и химических производств горючие отходы используются в качестве топлива для газовых турбин.

Газотурбинные установки находят также широкое применение на железнодорожном, морском, речном и автомобильном транспорте. Так, на быстроходных судах на подводных крыльях и воздушной подушке ГТУ являются двигателями. На большегрузных автомобилях они могут использоваться в качестве как основного, так и вспомогательного двигателя, предназначенного для подачи воздуха в "основной двигатель внутреннего сгорания и работающего на его выхлопных газах.

Кроме того, газотурбинные установки служат приводом нагнетателей природного газа на магистральных газопроводах, резервных электрогенераторов пожарных насосов.

Основное Направление, по которому развивается газотурбиностроение, это повышение экономичности ГТУ за счет .увеличения температуры и давления газа перед газовой турбиной. С этой Целью разрабатываются сложные системы охлаждения наиболее напряженных деталей турбин или применяются новые, высокопрочные материалы - жаропрочные на основе никеля, керамика и др.

Газотурбинные установки обычно надежны и просты в эксплуатации при условии строгого соблюдения установленных правил и режимов работы, отступление от которых может вызвать разрушение турбин, поломку компрессоров, взрывы в камерах сгорания и др.

Газотурбинная установка

Газотурбинная установка (ГТУ) состоит из двух основных частей - это силовая турбина и генератор, которые размещаются в одном корпусе. Поток газа высокой температуры воздействует на лопатки силовой турбины (создает крутящий момент). Утилизация тепла посредством теплообменника или котла-утилизатора обеспечивает увеличение общего КПД установки.

ГТУ может работать как на жидком, так и на газообразном топливе. В обычном рабочем режиме - на газе, а в резервном (аварийном) - автоматически переключается на дизельное топливо. Оптимальным режимом работы газотурбинной установки является комбинированная выработка тепловой и электрической энергии. ГТУ может работать как в базовом режиме, так и для покрытия пиковых нагрузок. (http://dic.academic.ru/dic.nsf/ruwiki/628201)

На первых этапах развития ГТУ в них для сжигания топлива применяли два типа камер сгорания. В камеру сгорания первого типа топливо и окислитель (воздух) подавались непрерывно, их горение также поддерживалось непрерывно, а давление не изменялось. В камеру сгорания, второго типа топливо и окислитель (воздух) подавались порциями. Смесь поджигалась и сгорала в замкнутом объеме, а затем продукты сгорания поступали в тубину. В такой камере сгорания температура и давление не постоянны: они резко увеличиваются в момент сгорания топлива.

Со временем выявились несомненные преимущества камер сгорания первого типа. Поэтому в современных газотурбинных установках топливо в большинстве случаев сжигают при постоянном давлении в камере сгорания.

Рис. 1. Газотурбинная установка

Устройство газотурбинной установки

Газотурбинная установка состоит из трех основных элементов: газовой турбины, камер сгорания и воздушного компрессора.

На рис. 1-а показана газотурбинная установка, компрессор 1, камеры сгорания 2 и газовая турбина 3 которой расположены в едином сборном корпусе. Роторы 6 и 5 компрессора и турбины жестко соединены друг с другом и опираются на три подшипника. Четырнадцать камер сгорания располагаются вокруг компрессора каждая в своем корпусе. Воздух поступает в компрессор через входной патрубок и уходит из газовой турбины через выхлопной патрубок. Корпус газотурбинной установки опирается на четыре опоры 4 и 8, которые расположены на единой раме7.

Тепловая схема такой газотурбинной установки показана на рис. 1-б. В камеры сгорания топливным насосом подаются топливо и сжатый воздух после компрессора. Топливо перемешивается с воздухом, который служит окислителем, поджигается и сгорает. Чистые продукты сгорания также смешиваются с воздухом, чтобы температура газа, получившегося после смешения, не превышала заданного значения. Из камер сгорания газ поступает в газовую турбину, которая предназначена для преобразования его потенциальной энергии в механическую работу. Совершая работу, газ остывает и давление его уменьшается до атмосферного. Из газовой турбины газ выбрасывается в окружающую среду.

Из атмосферы в компрессор поступает чистый воздух. В компрессоре его давление увеличивается и температура растет. На привод компрессора приходится отбирать значительную часть мощности турбины.

Газотурбинные установки, работающие по такой схеме, называют установками открытого цикла. Большинство современных ГТУ работает по этой схеме.

Рис. 2. Схема замкнутой ГТУ

1 - компрессор, 2 - турбина, 3 - электрический генератор, 4 - источник теплоты, 5 - регенератор, 6 - охладитель

Кроме того, применяются замкнутые ГТУ (рис. 2). В замкнутых ГТУ также имеются компрессор 1 и турбина 2. Вместо камеры сгорания используется источник теплоты 4, в котором теплота передается рабочему телу без перемешивания с топливом. В качестве рабочего тела может применяться воздух, углекислый газ, пары ртути или другие газы.

Рабочее тело, давление которого повышено в компрессоре, в источнике теплоты 4 нагревается и поступает втурбину 2, в которой отдает свою энергию. После турбины газ поступает в промежуточный теплообменник 5(регенератор), в котором он подогревает воздух, а затем охлаждается в охладителе 6, поступает в компрессор 1, и цикл повторяется. В качестве источника теплоты могут использоваться специальные котлы для нагрева рабочего тела энергией сжигаемого топлива или атомные реакторы.

Основные принципы работы

Одну из простейших конструкций газотурбинного двигателя, для понятия его работы, можно представить как вал, на котором находится два диска с лопатками, первый диск компрессора, второй - турбины, в промежутке между ними установлена камера сгорания.

Рис. 3. Простейшая схема газотурбинного двигателя

Принцип работы газотурбинного двигателя: всасывание и сжатие воздуха в компрессоре, подача его в камеру сгорания, смешение сжатого воздуха с топливом для образования топливо-воздушной смеси, воспламенение полученной топливо-воздушной смеси (ТВС) при помощи свечи зажигания, расширение газов при сгорании топливо-воздушной смеси, что формирует вектор давления газа, направленный в сторону меньшего сопротивления (в направлении лопаток турбины), передача энергии (давления) газа лопатками турбины на диск или вал, в котором эти лопатки закреплены, приводя во вращение диск (вал)турбины и, вследствие этого, передачу крутящего момента по валу на диск компрессора. Увеличение количества подаваемого топлива (добавление "газа") вызывает генерирование большего количества газов высокого давления, что, в свою очередь, ведет к увеличению числа оборотов турбины и диска(ов) компрессора и, вследствие этого, увеличению количества нагнетаемого воздуха и его давления, что позволяет подать в камеру сгорания и сжечь больше топлива. Количество топливо-воздушной смеси зависит напрямую от количества воздуха поданного в камеру сгорания. Увеличение количества ТВС приведет к увеличению давления в камере сгорания и температуры газов на выходе из камеры сгорания и, вследствие этого, позволяет создать большую энергию выбрасываемых газов, направленную для вращения турбины и повышения реактивной силы.

Как и во всех циклических тепловых двигателях, чем выше температура сгорания, тем выше КПД (Если точнее, чем выше разница между "нагревателем" и "охладителем"). Сдерживающим фактором является способность стали, никеля, керамики или других материалов, из которых состоит двигатель, выдерживать температуру и давление. Значительная часть инженерных разработок направлена на то, чтобы отводить тепло от частей турбины. Большинство турбин также пытаются рекуперировать тепло выхлопных газов, которое, в противном случае, теряется впустую. Рекуператоры - это теплообменники, которые передают тепло выхлопных газов сжатому воздуху перед сгоранием. При комбинированном цикле тепло передается системам паровых турбин. И при комбинированном производстве тепла и электроэнергии (когенерация) отработанное тепло используется для производства горячей воды.

Как правило, чем меньше двигатель, тем выше должна быть частота вращения вала(ов), необходимая для поддержания максимальной линейной скорости лопаток. Максимальная скорость турбинных лопаток определяет максимальное давление, которое может быть достигнуто, что приводит к получению максимальной мощности, независимо от размера двигателя. Реактивный двигатель вращается с частотой около 10000 об/мин и микро-турбина - с частотой около 100000 об/мин.

Авиационные двигатели также часто используются для генерации электрической мощности, благодаря их способности запускаться, останавливаться и изменять нагрузку быстрее, чем промышленные машины.

Для дальнейшего развития авиационных и газотурбинных двигателей рационально применять новые разработки в области высокопрочных и жаропрочных материалов для возможности повышения температуры и давления. Применения новых типов камер сгорания, систем охлаждения, уменьшения числа и массы деталей и двигателя в целом, возможно в прогрессе применение альтернативных видов топлива, изменение самого представления конструкции двигателя.

Простая газотурбинная установка непрерывного горения

Принципиальная схема простой газотурбинной установки показана на рисунке 4.

Компрессор 1 засасывает воздух из атмосферы, сжимает его до определенного давления и подает в камеру сгорания 2. Сюда же непрерывно поступает жидкое или газообразное топливо. Сгорание топлива при такой схеме происходит непрерывно, при постоянном давлении, поэтому такие ГТУ называются газотурбинными установками непрерывного сгорания или ГТУ со сгоранием при постоянном давлении.

Рис. 4. Принципиальна схема ГТУ: 1 - компрессор; 2 - камера сгорания; 3 - газовая турбина; 4 - электрогенератор

Горячие газы, образовавшиеся в камере сгорания в результате сжигания топлива, поступают в турбину 3. В турбине газ расширяется, и его внутренняя энергия преобразуется в механическую работу. Отработавшие газы выходят из турбины в окружающую среду (в атмосферу).

Часть мощности, развиваемой газовой турбиной, затрачивается на вращение компрессора, а оставшаяся часть (полезная мощность) отдается потребителю. Мощность, потребляемая компрессором, относительно велика и в простых схемах при умеренной температуре рабочей среды может в 2-3 раза превышать полезную мощность ГТУ. Это означает, что полная мощность собственно газовой турбины долгий быть значительно больше полезной мощности ГТУ.

Так как газовая турбина может работать только при наличии сжатого воздуха, получаемого только от компрессора, приводимого во вращение турбиной, очевидно, что пуск ГТУ должен осуществляться от постороннего источника энергии (пускового мотора), с помощью которого компрессор вращается до тех пор, пока из камеры сгорания не начнет поступать газ определенных параметров и в количестве, достаточном для начала работы газовой турбины.

Из приведенного описания ясно, что газотурбинная установка состоит из трех основных элементов: газовой турбины, компрессора и камеры сгорания. Рассмотрим принцип действия и устройство этих элементов.

Турбина. На рисунке 5 показана схема простой одноступенчатой турбины. Основными частями ее являются; корпус (цилиндр.) турбины 1, в котором укреплены направляющие лопатки 2, рабочие лопатка 3, установленные по всей окружности на ободе диска 4, закрепленного на валу 5. Вал турбины вращается в подшипниках 6. В местах выход вала из корпуса установлены концевые уплотнения 7, ограничивающие утечку горячих газов из корпуса турбин. Все вращающиеся части, турбины (рабочие лопатки, диск, вал) составляют ее ротор. Корпус с неподвижными направляющими лопатками и уплотнениями образует статор турбины. Диск с лопатками образует рабочее колесо.

Рис. 5. Схема одноступенчатой турбины

Совокупность ряда направлявших и рабочих лопаток называется турбинной ступенью. На рисунке 3 вверху изображена схема такой турбинной ступени и внизу дано сечение направляющих и рабочих лопаток цилиндрической поверхности а-а, развернутой затем на плоскость чертежа.

Направляющие лопатки 1 образуют в сечении суживающиеся каналы, называемые соплами. Каналы, образованные рабочими лопатками 2, также обычно имеют суживающуюся форму.

Горячий газ при повышенном давлении поступает в сопла турбины, где происходит его расширение и соответствующее увеличение скорости. При этом давление и температура газа падают. Таким образом, в соплах турбины совершается преобразование потенциальной энергии газа в кинетическую энергии. После выхода из сопел газ попадает в межлопаточные каналы рабочих лопаток, где изменяет свое направление. При обтекании газом рабочих лопаток давление на их вогнутой поверхности оказывается большим, чем на выпуклой, и под влиянием этой разности давлений происходит вращение рабочего колеса (направление вращение на рисунке 3 показано стрелкой u). Таким образом, часть кинетической энергии газа преобразуется на рабочих лопатках в механическую оказаться недопустимей по соображениям прочности рабочих лопаток или диска турбины. В таких случаях турбины выполняются многоступенчатыми. Схема многоступенчатой турбины показана на рисунке.

Рис. 6. Схема многоступенчатой турбины: 1-подшипники; 2-концевые уплотнения; 3-входной патрубок; 4-корпус; 5-направляющие лопатки; 6-рабочие лопатки; 7-ротор; 8-выходной патрубок турбины

Турбина состоит из ряда последовательно расположенных отдельных ступеней, в которых происходит постепенное расширение газа. Падение давления, приходящееся на каждую ступень, а, следовательно, и скорость с1 в каждой ступени такой турбины, меньше, чем в одноступенчатой. Число ступеней может быть выбрано таким, чтобы при заданной окружной скорости и было получено желаемое отношение .

Компрессор. Схема многоступенчатого осевого компрессора изображена на рисунке.

Рис. 7. Схема многоступенчатого осевого компрессора: 1-входной патрубок; 2-концевые уплотнения; 3-подшипники; 4-входной направляющий аппарат; 5-рабочие лопатки; 6-направляющие лопатки; 7-корпус 8-спрямляющий аппарат; 9-диффузор; 10-выходной патрубок; 11-ротор.

Его основными составными частями являются: ротор 2 с закрепленными на нем рабочими лопатками 5, корпус 7 (цилиндр.), к которому крепятся направляющие лопатки 6 и концевые уплотнения 2, и подшипники 3. Совокупность одного ряда вращающихся рабочих лопаток и одного ряда расположенных за ними неподвижных направляющих лопаток называется ступенью компрессора. Засасываемый компрессором воздух последовательно проходит через следующие элементы компрессора, показанные на рисунке 5: входной патрубок 1, входной направляющий аппарат 4, группу ступеней 5, 6, спрямляющий аппарат 8, диффузор 9 и выходной патрубок 10.

Рассмотрим назначение этих элементов. Входной патрубок предназначен для равномерного подвода воздуха из атмосферы к входному направляющему аппарату, который должен придать необходимое направление потоку перед входом в первую степень. В ступенях воздух сжимается за счет передачи механической энергии потоку воздуха от вращающихся лопаток. Из последней ступени воздух поступает в спрямляющий аппарат, предназначенный для придания потоку осевого направления перед входом в диффузор. В диффузоре продолжается сжатие газа за счет понижения его кинетической энергии. Выходной патрубок предназначен для подачи воздуха от диффузора к перепускному трубопроводу. Лопатки компрессора 1 (рисунок 9) образуют ряд расширяющихся каналов (диффузоров). При вращении ротора воздух входит в межлопаточные каналы с большой относительной скоростью (скорость движения воздуха, наблюдаемая с движущихся лопаток). При движении воздуха по этим каналам его давление повышается в результате уменьшения относительной скорости. В расширяющихся каналах, образованных неподвижными направляющими лопатками 2, происходит дальнейшее повышение давления воздуха, сопровождающееся соответствующим уменьшением его кинетической энергии. Таким образом, преобразование энергии в ступени компрессора происходит по сравнению с турбиной ступенью в обратном направлении.

Рис. 8. Схема ступени осевого компрессора

Простая газотурбинная установка прерывистого горения

Схема установка прерывистого горения отличается от установки непрерывного горения устройством камеры сгорания (рис.10).

Рис. 9. Камера прерывистого горения

1-воздушный клапан; 2-топливный клапан; 3-свеча зажигания; 4-сопловой (газовый) клапан

Камера сгорания ГТУ прерывистого горения имеет клапаны 1, 2 и 4, которые управляются особым распределительным механизмом, Представим себе, что в некоторый момент времена все клапаны закрыты, и камера заполнена смесью воздуха и топлива. При помощи свечи зажигания 3 смесь воспламеняется и давление в камере повышается, так как сгорание происходит при постоянном объеме.

При достижении определенного давления открывается клапан 4 и продукты сгорания поступают к соплам турбины, в которых происходит расширение газа. Давление в камере сгорания падает. После того, как давление в камере упадет до определенной величины, автоматически открывается воздушный клапан 1 и происходит продувка камеры свежим воздухом. Этот воздух проходит также через турбину и охлаждает ее лопаточный аппарат. В конце продувки сопловой клапан 4 закрывается и камера сгорания заполняется сжатым воздухом из компрессора. При работе на газообразном топливе в это же время через клапан 2 подается горючий газ. Этот процесс называется зарядкой камеры. По окончании зарядки закрываются все клапаны и происходит вспышка. Далее цикл повторяется. (http://auto-dnevnik.com/docs/index-4778.html)

Газотурбинные электростанции

Газотурбинная электростанция - современная, высокотехнологичная установка, генерирующая электричество и тепловую энергию.

Основу газотурбинной электростанции составляют один или несколько газотурбинных двигателей - силовых агрегатов, механически связанных с электрогенератором и объединенных системой управления в единый энергетический комплекс. Газотурбинная электростанция может иметь электрическую мощность от двадцати киловатт до сотен мегаватт. Газотурбинная электростанция способна отдавать потребителю значительное количество тепловой энергии - с коэффициентом ~ 1:2 по отношению к электрической мощности.

Газотурбинная электростанция, тепловая электростанция, в которой в качестве привода электрического генератора используется газовая турбина. Газотурбинные электростанции появились как станции, работающие на продуктах подземной газификации углей. Первая такая Газотурбинная электростанция в СССР - Шатская буроугольная подземногазовая электростанция (Тульская обл.) - была сооружена в районе залегания высокозольного и влажного бурого угля. Угольные Газотурбинная электростанция широкого применения не получили главным образом изза быстрого износа лопаток газовых турбин под воздействием содержащихся в газах частиц угля.

В 50-60-х гг. 20 в. в мировой практике получили широкое распространение газотурбинные электростанции с газотурбинными двигателями. Их суммарная мощность к 1970 превысила 2000 Мвт. Так, в США и Великобритании тепловые блоки мощностью свыше 500 Мвт, как правило, снабжаются газотурбинными установками мощностью 25-35 Мвт для покрытия нагрузок в часы «пик». Получили также распространение автоматические Газотурбинная электростанция на базе авиационных турбин с 2-4 газовыми турбоагрегатами (каждый мощностью 10-20 Мвт). Конструктивно Газотурбинная электростанция могут быть размещены на полуприцепах-фургонах или железнодорожных платформах и использованы в местах новых разрабатываемых месторождений полезных ископаемых, особенно в районах месторождений нефти, где Газотурбинная электростанция могут работать на попутном газе, или в районах строительств в качестве временных электростанций. Газотурбинная электростанция могут также служить резервными источниками мощности, включаемыми в случае возникновения в энергосистемах аварийных ситуаций. Газотурбинная электростанция, предназначенные для покрытия нагрузок в часы «пик», имеют облегченную тепловую схему безрегенерационного типа, кпд порядка 20-25%; стоимость установленного КВТ таких электростанций составляет примерно 50% стоимости установленного КВТ современной ТЭС. Газотурбинная электростанция имеют, как правило, высокую степень автоматизации и дистанционное управление. Пуск станции и прием нагрузки, а также работа вспомогательного оборудования (например, пополнение топливных и масляных баков) обычно автоматизируются. Передвижные Газотурбинная электростанция применяются редко, т. к. имеют низкий кпд и относительно высокую стоимость оборудования по сравнению, например, с дизельными электростанциями. Существуют проекты атомных Газотурбинная электростанция (США), в которых рабочий газ (гелий), нагретый до 800-1000°С, будет поступать от высокотемпературных графито-газовых реакторов.

Основные преимущества газотурбинных электростанций: ГТЭС весьма надежны. В среднем, длительность работы основных узлов без капитального ремонта составляет до 100-130 тыс. часов.

КПД самой газотурбинной установки составляет порядка 51%, а при утилизации уходящих газов, общий КПД достигает уже 93%

Газотурбинные электростанции, как уже было отмечено выше, имеют довольно небольшие размеры, что значительно уменьшает срок строительства, и, соответственно, позволяет им быстро окупаться.

Газотурбинные электростанции довольно экологичны, чему в последнее время уделяется все больше внимания.

ГТЭС могут работать в полностью автоматическом режиме, а возможность полной диагностики состояния оборудования или основных узлов станции, простота управления и, соответственно, минимальное количество обслуживающего персонала делают их наиболее оптимальным решением в самых различных ситуациях.

ГТЭ комбинированного цикла

В настоящее время основным типом электростанций является электростанции комбинированного цикла. Это парогазовые установки (STAG).

Парогазовые электростанции представляют собой сочетание газовой и паровой турбины. Электростанции комбинированного типа на базе парогазовых установок обладают очень высоким КПД - 58%, а также более экологически чистые, т.к. они производят гораздо меньше выбросов парниковых газов. Парогазовые установки могут работать на природном газе или жидких видах топлива (дизельное топливо, солярка, мазут), а комбинированность достигается в результате утилизации отработанных газов. Газы, образующиеся в результате горения топлива, не только приводят в действие основную турбину, но и поступают в специальный котел-утилизатор. Здесь они нагревают водяной пар, и в результате высокого давления последнего, приводится в действие паровая турбина, передающая энергию на второй генератор.

Рис. 10. Схема газотурбинной электростанции комбинированного цикла газотурбинный установка электростанция

Именно благодаря такой совокупности выработки энергии и достигается высокая эффективность работы электростанции комбинированного типа на базе парогазовой установки.

Размещено на .ru

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?