Понятие, предел и непрерывность функции двух переменных. Частные производные первого порядка, нахождение полного дифференциала. Частные производные высших порядков и экстремум функции нескольких переменных. Необходимые условия существования экстремума.
В данной работе рассмотрим функции двух переменных, так как все основные понятия и теоремы, сформулированные для функций двух переменных, легко обобщаются на случай большего числа переменных. В данной лекции рассматриваются функции двух переменных, так как все основные понятия и теоремы, сформулированные для функций двух переменных, легко обобщаются на случай большего числа переменных. Пару чисел иногда называют точкой , а функцию двух переменных - функцией точки . Совокупность всех точек , в которых определена функция , называется областью определения этой функции. Функция называется непрерывной в точке , если: 1) определена в точке и ее окрестности; 2) имеет конечный предел ; 3) этот предел равен значению функции в точке , т.е.Частные производные и называют частными производными первого порядка или первыми частными производными. Частными производными второго порядка функции называются частные производные от частных производных первого порядка. Аналогично определяются частные производные 3-го, 4-го и более высоких порядков. Частные производные второго или более высокого порядка, взятые по различным переменным, называются смешанными частными производными.Точка называется точкой минимума (максимума) функции , если существует такая окрестность точки , что для всех точек из этой окрестности выполняется неравенство , (). Точки минимума и максимума функции называются точками экстремума, а значения функции в этих точках - экстремумами функции (минимумом и максимумом соответственно). Заметим, что минимум и максимум функции имеют локальный характер, так как значение функции в точке сравнивается с ее значениями в точках, достаточно близких к .Теорема 1 (необходимые условия экстремума). В критических точках функция может иметь экстремум, а может и не иметь. Тогда, если , то функция в точке имеет экстремум: максимум, если А0; если , то функция в точке экстремума не имеет.В теории функций нескольких переменных иногда возникают задачи, когда экстремум функции нескольких переменных необходимо найти не на всей области определения, а на множестве, удовлетворяющем некоторому условию. Пусть - функция двух переменных, аргументы x и y которой удовлетворяют условию , называемому уравнением связи. Точка называется точкой условного минимума (максимума) функции , если существует такая окрестность точки , что для всех точек из этой окрестности, удовлетворяющих условию , выполняется неравенство , (). Если уравнение связи можно разрешить относительно одной из переменных (например, выразить y через x: ), то задача отыскания условного экстремума функции двух переменных сводится к нахождению экстремума функции одной переменной. Из уравнения связи находим функцию и подставляем ее в функцию z.Начальные сведения о пределах и непрерывности встречаются в школьном курсе математики. С помощью предела вводятся производная и определенный интеграл; пределы же являются основным средством в построении теории рядов. Понятие предела, впервые появившееся в 17 веке в работах Ньютона, используется и получает дальнейшее развитие в теории рядов.
План
Содержание
Введение
1. Понятие функции двух переменных
2. Предел и непрерывность функции двух переменных
3. Частные производные первого порядка. Полный дифференциал
4. Частные производные высших порядков
5. Экстремум функции нескольких переменных. Необходимые и достаточные условия существования экстремума
6. Условный экстремум
Заключение
Список литературы предел функция производная дифференциал экстремум
Введение
Явления, происходящие в общественной жизни, природе, экономике, не всегда можно описать с помощью функции всего лишь одной переменной.
Например, рентабельность предприятия зависит от прибыли, основных и оборотных фондов. Понятие функции нескольких переменных появилось именно для изучения такого рода зависимостей.
В наше время наука неумолимо быстро развивается, и для ее развития требуются все более сложные решения тех или иных вопросов. Поэтому для роста научно технического прогресса и усложнения экономических процессов требуются новые привлечения математических процессов.
В данной работе рассмотрим функции двух переменных, так как все основные понятия и теоремы, сформулированные для функций двух переменных, легко обобщаются на случай большего числа переменных.
1. Понятие функции двух переменных
Многие явления, происходящие в природе, экономике, общественной жизни нельзя описать с помощью функции одной переменной. Например, рентабельность предприятия зависит от прибыли, основных и оборотных фондов. Для изучения такого рода зависимостей и вводится понятие функции нескольких переменных.
В данной лекции рассматриваются функции двух переменных, так как все основные понятия и теоремы, сформулированные для функций двух переменных, легко обобщаются на случай большего числа переменных.
Пусть - множество упорядоченных пар действительных чисел .
Определение 1. Если каждой упорядоченной паре чисел по некоторому закону поставлено в соответствие единственное действительное число , то говорят, что задана функция двух переменных или . Числа называются при этом независимыми переменными или аргументами функции, а число - зависимой переменной.
Например, формула , выражающая объем цилиндра, является функцией двух переменных: - радиуса основания и - высоты.
Пару чисел иногда называют точкой , а функцию двух переменных - функцией точки .
Значение функции в точке обозначают или и называют частным значением функции двух переменных.
Совокупность всех точек , в которых определена функция , называется областью определения этой функции. Для функции двух переменных область определения представляет собой всю координатную плоскость или ее часть, ограниченную одной или несколькими линиями.
Например, область определения функции - вся плоскость, а функции - единичный круг с центром в начале координат ( или .
2. Предел и непрерывность функции двух переменных
Понятия предела и непрерывности функции двух переменных аналогичны случаю одной переменной.
Пусть - произвольная точка плоскости. - окрестностью точки называется множество всех точек , координаты которых удовлетворяют неравенству . Другими словами, - окрестность точки - это все внутренние точки круга с центром в точке и радиусом .
Определение 2. Число называется пределом функции при (или в точке ), если для любого сколь угодно малого положительного числа существует (зависящее от ) такое, что для всех и удовлетворяющих неравенству выполняется неравенство .
Обозначается предел следующим образом: или .
Пример 1. Найти предел .
Решение. Введем обозначение , откуда . При имеем, что . Тогда
.
Определение 3. Функция называется непрерывной в точке , если: 1) определена в точке и ее окрестности; 2) имеет конечный предел ; 3) этот предел равен значению функции в точке , т.е. .
Функция называется непрерывной в некоторой области, если она непрерывна в каждой точке этой области.
Точки, в которых условие непрерывности не выполняется, называются точками разрыва этой функции. В некоторых функциях точки разрыва образуют целые линии разрыва. Например, функция имеет две линии разрыва: ось ( ) и ось ( ).
Пример 2. Найти точки разрыва функции .
Решение. Данная функция не определена в тех точках, в которых знаменатель обращается в нуль, т. е. в точках, где или . Это окружность с центром в начале координат и радиусом . Значит, линией разрыва исходной функции будет окружность .
3. Частные производные первого порядка. Полный дифференциал
Пусть задана функция двух переменных . Дадим аргументу приращение , а аргумент оставим неизменным. Тогда функция получит приращение , которое называется частным приращением по переменной и обозначается : .
Аналогично, фиксируя аргумент и придавая аргументу приращение , получим частное приращение функции по переменной : .
Величина называется полным прира-щениием функции в точке .
Определение 4. Частной производной функции двух переменных по одной из этих переменных называется предел отношения соответствующего частного приращения функции к приращению данной переменной, когда последнее стремится к нулю (если этот предел существует). Обозначается частная производная так: или , или .
Таким образом, по определению имеем: ,
.
Частные производные функции вычисляются по тем же правилам и формулам, что и функция одной переменной, при этом учитывается, что при дифференцировании по переменной , считается постоянной, а при дифференцировании по переменной постоянной считается .
Пример 3. Найти частные производные функций: а) ; б) .
Решение. а) Чтобы найти считаем постоянной величиной и дифференцируем как функцию одной переменной : .
Аналогично, считая постоянной величиной, находим :
.
Решение. б) ;
.
Определение 5. Полным дифференциалом функции называется сумма произведений частных производных этой функции на приращения соответствующих независимых переменных, т.е.
.
Учитывая, что дифференциалы независимых переменных совпадают с их приращениями, т.е. , формулу полного дифференциала можно записать в виде или .
Пример 4. Найти полный дифференциал функции .
Решение. Так как , то по формуле полного дифференциала находим
.
Вывод
Начальные сведения о пределах и непрерывности встречаются в школьном курсе математики.
В курсе математического анализа понятие предела является одним из основных. С помощью предела вводятся производная и определенный интеграл; пределы же являются основным средством в построении теории рядов. Понятие предела, впервые появившееся в 17 веке в работах Ньютона, используется и получает дальнейшее развитие в теории рядов. В этом разделе анализа исследуются вопросы, связанные с суммой бесконечной последовательности величин (как постоянных, так и функций).
Непрерывность функции дает представление о ее графике. Это означает, что график есть сплошная линия, а не состоит из отдельных разрозненных участков. Это свойство функции находит широкое применение в сфере экономики.
Поэтому понятия предела и непрерывности играют важную роль в исследовании функций нескольких переменных.
Список литературы
1. Бугров Я.С., Никольский С.М. Высшая математика: Учебник для вузов. Том 2: Дифференциальное и интегральное исчисление. Москва: Дрофа, 2007 год, 512 с.
2. Кремер Н.Ш., Путко Б.А., Тришин И.М., Фридма М.Н. Высшая математика для экономистов. Москва: Юнити, 2005 год, 271 с.
3. Черненко В.Д. Высшая математика в примерах и задачах. Учебное пособие для вузов. Санкт-Петербург: Политехника, 2008 год, 703 с.
4. Яблонский А. И., Кузнецов А. В., Шилкина Е. И. и др. Высшая математика. Общий курс: Учебник / Под общ. ред. С. А. Самаля.- Мн.: Выш. шк., 2005. - 351 с.
Размещено на .ru
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы