Метод преобразования солнечной энергии в электрическую. Устройство и принцип действия фотоэлементов. Внутренний фотоэлектрический эффект в полупроводниках. Радиационные, световые и тепловые воздействия. Условия работы фотоэлектрических преобразователей.
Фотоэлектрические преобразователи (ФЭП) - электронный прибор, который преобразует энергию фотонов в электрическую энергию. ФЭП или солнечные элементы являются наиболее перспективными, экологически чистыми кандидатами на уменьшение нефтяной зависимости мира и, в отличие от органических и неорганических источников энергии, преобразуют солнечное излучение непосредственно в электроэнергию. Даже вблизи Земли, на расстоянии около 150 млн. км от Солнца, на каждый квадратный метр поверхности, расположенной перпендикулярно солнечным лучам, приходится 1,4 КВТ лучистой энергии. Легко подсчитать, что полная мощность солнечной радиации, поступающей на Землю, равна 178,6x1012 КВТ. Как уже сказано, на 1 м2 поверхности Земли, расположенной перпендикулярно солнечным лучам, приходится 1,4 КВТ солнечной радиации, а на 1 м2 поверхности Земли (сферы Земли) приходится в среднем 0,35 КВТ.Фотоэлемент, основанный на внешнем фотоэффекте, состоит из стеклянной колбы, из которой откачан воздух (так называемые вакуумные фотоэлементы).При любом способе производства электричества необходимо иметь электрические заряды и обеспечить механизм их разделения. В индукционном методе для получения электричества используют свободные заряды металлических проводников, а их разделение осуществляется в результате перемещения проводников в магнитном поле. В фотовольтаическом элементе свободные носители образуются в результате взаимодействия полупроводника со светом, а разделяются под действием электрического поля, возникающего внутри элемента. Таким образом, поглощение света в идеальном полупроводнике приводит к появлению электрон-дырочной пары, которая существует в полупроводнике некоторое время, определяемое временем жизни, которое в свою очередь зависит от структурного совершенства полупроводникого материала. При поглощении фотонов происходит генерация неравновесных электрон-дырочных пар, разделение которых встроенным электрическим полем приводит к формированию фото-э.д.с, которое существует до тех пор пока полупроводниковая структура освещается светом.Реальные условия работы фотоэлектрических преобразователей (ФЭП) связаны с периодическим воздействием на приборные структуры различных внешних неблагоприятных факторов, приводящих к деградации эксплуатационных характеристик ФЭП. Определение величины этих потерь, с одной стороны, позволяет установить причину снижения коэффициента полезного действия (к.п.д), с другой - совершенствовать технологию изготовления ФЭП. Баланс подводимой к p-n-переходу ФЭП и отводимой от него энергии может быть представлен в виде: (1) где Eg - ширина запрещенной зоны полупроводника, Nc и Nv - эффективные плотности состояний у краев зон проводимости и валентной, соответственно; Іф=Ікз - ток короткого замыкания, Ін, Uн - ток и напряжение на нагрузке, соответствующее максимальной электрической мощности Рэл.max, отдаваемой образцом ФЭП. где Прямоугольники 1 и 2 соответствуют энергетическим потерям на нагрев контактов, 3 - потери энергии в области p-n перехода, 4 - полезная отводимая электрическая энергия, 5 - потери при рекомбинации электронно - дырочных пар при протекании темнового тока. Таким образом, определение нагрузочной характеристики на устройстве позволяет установить соотношение компонентов энергетических потерь, а изменение этого соотношения при различных уровнях освещенности и различных температурах образца ФЭП - анализировать причины и оптимизировать конструктивное исполнение ФЭП.По своему конструктивно-технологическому решению фотоэлектрические преобразователи представляют собой наукоемкие изделия электронной техники.Высокая цена установок определяется высокой стоимостью солнечных модулей.
План
Содержание
1.Введение
2.Устройство и принцип действия
3.Физический эффект работы
4.Рабочие характеристики и праметры
5.Конструктивно-технологические решения ФЭП на основе монокристаллического кремния
6.Перспективы развития
7. Список источников
Введение
Фотоэлектрические преобразователи (ФЭП) - электронный прибор, который преобразует энергию фотонов в электрическую энергию. Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов.
Фотоэлектрический (или фотовольтаический) метод преобразования солнечной энергии в электрическую является в настоящее время наиболее разработанным в научном и практическом плане. Впервые на перспективу его использования в крупномасштабной энергетике обратил внимание еще в 30-е годы один из основателей советской физической школы академик А. Ф. Иоффе. Однако в то время КПД солнечных элементов не превышал 1%.
Современные тенденции в мировой энергетике стимулируют существенный рост интереса к альтернативным источникам энергии. ФЭП или солнечные элементы являются наиболее перспективными, экологически чистыми кандидатами на уменьшение нефтяной зависимости мира и, в отличие от органических и неорганических источников энергии, преобразуют солнечное излучение непосредственно в электроэнергию.
Солнце - самый мощный источник энергии по сравнению со всеми другими, доступными человеку. Полная мощность солнечного излучения выражается огромной цифрой: 4x1026 Вт, или 4x1014 млрд. КВТ. Эта цифра настолько велика, что трудно выбрать для сопоставления с ней какую-либо подходящую величину, привычную для нас в наших земных масштабах. Даже вблизи Земли, на расстоянии около 150 млн. км от Солнца, на каждый квадратный метр поверхности, расположенной перпендикулярно солнечным лучам, приходится 1,4 КВТ лучистой энергии.
Средний радиус Земли равен 6370 км, а поперечное сечение Земли составляет 127,6x106 км2. Легко подсчитать, что полная мощность солнечной радиации, поступающей на Землю, равна 178,6x1012 КВТ. Из этого следует, что в течение года на Землю в виде лучистой энергии передается 1,56x1018 КВТХЧ.
Как уже сказано, на 1 м2 поверхности Земли, расположенной перпендикулярно солнечным лучам, приходится 1,4 КВТ солнечной радиации, а на 1 м2 поверхности Земли (сферы Земли) приходится в среднем 0,35 КВТ.
Следует, однако, иметь в виду, что больше половины энергии солнечной радиации не доходит непосредственно до поверхности Земли (суши и океана), а отражается атмосферой. Считается, что на 1 м2 суши и океана земли приходится в среднем около 0,16 КВТ солнечной радиации. Следовательно, для всей поверхности Земли солнечная радиация составляет величину, близкую к 1014 КВТ, или 105 млрд. КВТ. Эта цифра, вероятно, во многие тысячи раз превышает не только сегодняшнюю, но и перспективную потребность человечества в энергии.
ФЭП широко используются для питания магистральных систем электроснабжения и различного оборудования на КЛА; они предназначены также для подзарядки бортовых химических аккумуляторных батарей. Кроме того, ФЭП находят применение на наземных стационарных и передвижных объектах, например, в АЭУ электромобилей. С помощью ФЭП, размещенных на верхней поверхности крыльев, осуществлено питание приводного электродвигателя винта одноместного экспериментального самолета (США), совершившего перелет через пролив Ла-Манш.
В настоящее время предпочтительная область применения ФЭП - искусственные спутники Земли, орбитальные космические станции, межпланетные зонды и другие КЛА.
Достоинства ФЭП: -большой срок службы;
-достаточная аппаратурная надежность;
-отсутствие расхода активного вещества или топлива.
Недостатки ФЭП: -необходимость устройств для ориентации на Солнце;
-сложность механизмов, разворачивающих панели ФЭП после выхода КЛА на орбиту;
-неработоспособность в отсутствие освещения;
-относительно большие площади облучаемых поверхностей.