Философские проблемы математики - Контрольная работа

бесплатно 0
4.5 60
Роль математики в современной науке, греческая философия и ее математика. Появление математического атомизма, его сущность, понятие и значение. Философские предпосылки обоснования исчисления бесконечно малых. Неевклидовы геометрии и их развитие.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:




Аннотация к работе
Это связано с тем, что, во-первых, без математического описания целого ряда явлений действительности трудно надеяться на их более глубокое понимание и освоение, а, во-вторых, развитие физики, лингвистики, технических и некоторых других наук предполагает широкое использование математического аппарата. Более того, без разработки и использования последнего было бы, например, невозможно ни освоение космоса, ни создание электронно-вычислительных машин, нашедших применение в самых различных областях человеческой деятельности. Математика - чрезвычайно своеобразная наука, философский анализ целого ряда положений которой весьма сложен. И хотя особенности математического знания были предметом пристального внимания выдающихся философов и математиков всех времен и народов, многие методологические проблемы математики остаются недостаточно разработанными, что в свою очередь тормозит развитие как «чистой» и прикладной математики, так и других отраслей науки, в том числе философии.Большинство историков науки относят, однако, появление математики как теоретической дисциплины к более позднему периоду, а именно к греческому периоду ее развития, так как ни в египетской, ни в вавилонской математике, несмотря на наличие там довольно сложных и точных результатов, не найдено какого-либо следа собственно математического, дедуктивного рассуждения, то есть вывода одних формул и правил на основе других или иначе - математического доказательства в обычном смысле этого слова. Если верно, что дедуктивный метод в математику был внесен Фалесом, то надо сказать, что математика в Греции, начиная с этого момента, развивалась чрезвычайно быстрыми темпами, и прежде всего в плане логической систематизации. На фоне разного рода неустойчивых представлений, которые так же трудно доказать, как и опровергнуть, где реальное смешалось с фантастическим, математика появилась как знание совершенно особой природы, достоверность которого не вызывает никакого сомнения, посылки которого ясны, а выводы совершенно непреложны. Неудивительно, что в математике греки увидели не просто практически полезное средство, но, прежде всего, выражение глубинной сущности мира, нечто связанное с истинной и неизменной природой вещей. Они космологизировали и мистифицировали математику, сделав ее исходным пунктом в своих подходах к описанию действительности.За тысячу лет, которую мы называем эпохой средневековья, в математике не произошло существенных переворотов, хотя математические и логические истины были постоянным объектом различных схоластических спекуляций. Новые идеи возникли в связи с потребностями науки, в особенности механики и это обстоятельство предопределило появление принципиально новой философии математики. Математика стала рассматриваться не как врожденное и абсолютное знание, а скорее как знание вторичное, опытное, зависящее в своей структуре от некоторых внешних реальностей. Эта философская установка предопределила в свою очередь конкретное методологическое мышление, ярко проявившееся в сфере обоснования дифференциального и интегрального исчислений. Основным понятием теории математика и философа Лейбница было понятие дифференциала, или бесконечно малого приращения функции.[4] Пусть мы имеем функцию y=f(x).Были связаны в основном с развитием геометрии, а именно с истолкованием неевклидовых геометрий. Лобачевский представил ученому совету физико-математического факультета доклад с изложением основ геометрии. Главная идея его состояла в том, что аксиома Евклида о параллельных прямых независима от других аксиом евклидовой геометрии (невыводима из них) и, следовательно, возможно построить другую геометрию, столь же непротиворечивую, как и евклидова, если в евклидовой геометрии заменить аксиому о параллельных на противоположное утверждение [1]. Значение неевклидовых геометрий состоит прежде всего в том, что их построение и доказательство непротиворечивости представляет собой окончательное решение проблемы о параллельных, занимавшей математиков в течение двух тысячелетий. Противоположное, рационалистическое воззрение на геометрию и математику в целом, которому суждено было сыграть исключительно большую роль в дискуссиях о природе неевклидовых геометрий, было развито в конце XVIII в. выдающимся немецким философом И. Кантом.История показывает, что на каждом конкретном этапе философия математики вращается вокруг какого-то определенного круга событий в математике, в какой-то мере, может быть, даже абсолютизируя его и преувеличивая его значимость.Математику, как и философию можно отнести к всеобщим наукам. В самом деле, она считается всеобщей и абстрактной наукой, поскольку математический аппарат в принципе может использоваться и практически используется во всех без исключения областях знания.

План
Содержание

Введение

1. Экскурс в историю

1.1 Греческая философия и ее математика

1.2 Возрождение. Философские предпосылки обоснования исчисления бесконечно малых

1.3 Неевклидовы геометрии и развитие философии математики в XIX веке

1.4 Математика в XX веке

2. Философия и математика

Заключение

Список литературы

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы







Хотите, перезвоним вам?