Этапы развития электроники - Реферат

бесплатно 0
4.5 50
Начало использования полупроводников 1940-50-е годы. Появление и использование первых интегральных схем. Появление БИС микропроцессоров в 1970-е годы. Распространение архитектуры intel. Развитие технологий литорафии. Усложнение техпроцесса в 2000-е годы.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
- когда вычислительная техника уже была электронной, но еще релейно-ламповой (хотя британцы уже во Второй Мировой Войне использовали германиевые диоды) - руководство американской компании Bell Labs основало группу под руководством Уильяма Шокли по исследованию полупроводниковой замены вакуумным лампам, что и произошло через 2 года с изобретением транзистора[1,с. Уже через 2 года появились транзисторные радиоприемники, на время ставшие сутью самого слова «транзистор» в массовом сознании. Кстати, Уильям Шокли также достиг массового производства своего диода, но так и не добился успеха - потому что появились микросхемы, где 3-6 транзисторов могли заменить такой диод. Далее Крэй задался целью построить самый быстрый в мире компьютер (будущий CDC 6600), для чего ему нужен был транзистор со временем переключения менее 3 нс и способностью выдержать перегрев (ибо высокоплотный монтаж в электронике - тоже не сегодняшнее изобретение). Для этого другой группе под руководством Боба Деннара (изобретателя самой компактной и до сих пор применяемой во всех чипах ДОЗУ 1-транзисторной ячейки) поручили сделать исследование, из которого оказалось, что самый верный способ - уменьшить площадь ячейки уменьшением не числа транзисторов, как было до сих пор (ДОЗУ начинались с 3 транзисторов/бит), а самих транзисторов.Наноэлектроника в первую очередь базируется на результатах фундаментальных исследований атомных процессов в полупроводниковых структурах пониженной размерности. Квантовые точки, или нульмерные системы, представляют собой предельный случай систем с пониженной размерностью, которые состоят из массива атомных кластеров или островков нанометровых размеров в полупроводниковой матрице, проявляющих самоорганизацию в эпитаксиальных гетероструктурах.

План
Содержание

Введение

Начало использования полупроводников 1940-50-е годы

Появление и использование первых интегральных схем

Появление БИС микропроцессоров в 1970-е годы

Распространение архитектуры intel в 1980-е годы

Развитие технологий литорафии 1990-е

Усложнение техпроцесса в 2000-е годы

Заключение

Список использованной литературы

Введение
Электроника прошла несколько этапов развития, за время которых сменилось несколько поколений элементной базы дискретная электроника электровакуумных приборов, дискретная электроника полупроводниковых приборов, интегральная электроника микросхем микроэлектроника, интегральная электроника функциональных микроэлектронных устройств функциональная микроэлектроника.

Элементная база электроники развивается непрерывно возрастающими темпами. Каждое из приведенных поколений, появившись в определенный момент времени, продолжает совершенствоваться в наиболее оправданных направлениях. Развитие изделий электроники от поколения к поколению идет в направлении их функционального усложнения, повышения надежности и срока службы, уменьшения габаритных размеров, массы, стоимости и потребляемой энергии, упрощения технологии и улучшения параметров электронной аппаратуры. Современный этап развития электроники характеризуется широким применением интегральных микросхем ИМС.

Это связано со значительным усложнением требований и задач, решаемых электронной аппаратурой, что привело к росту числа элементов в ней. Число элементов постоянно увеличивается. Разрабатываемые сейчас сложные системы содержат десятки миллионов элементов. В этих условиях исключительно важное значение приобретают проблемы повышения надежности аппаратуры и ее элементов, микроминиатюризация электронных компонентов и комплексной миниатюризации аппаратуры.

Начало использования полупроводников 1940-50-е годы

В 1945 г. - когда вычислительная техника уже была электронной, но еще релейно-ламповой (хотя британцы уже во Второй Мировой Войне использовали германиевые диоды) - руководство американской компании Bell Labs основало группу под руководством Уильяма Шокли по исследованию полупроводниковой замены вакуумным лампам, что и произошло через 2 года с изобретением транзистора[1,с. 24]. А в 1948 г. «transistron» был независимо изобретен работающими во Франции двумя немецкими физиками - Хэрбертом Матаре и Хайнрихом Велкером.

Правда, оба прибора были с неудобным в производстве точечным контактом к полупроводнику. В 1951 г. Шокли изобрел биполярный транзистор с двумя p-n-переходами, полностью заменивший точечные уже к середине 50-х. К 1954 г. транзисторы уже стали обязательными компонентами в телефонных станциях и аппаратах фирмы Bell. Мудрейшим шагом компании было решение 1952 г. о продаже (за 25 000 долларов) лицензий на выпуск биполярных транзисторов 26 другим фирмам. Уже через 2 года появились транзисторные радиоприемники, на время ставшие сутью самого слова «транзистор» в массовом сознании. В 1956 г. за открытие транзисторного эффекта Уильям Шокли и его помощники Джон Бэрдин и Уолтер Брэттэйн получили нобелевскую премию по физике.

После изобретения транзистора Шокли в 1956 г. основал компанию Shockley Semiconductor Laboratory, где изобрел еще один полупроводниковый прибор, названный им «диод Шокли». В отличие от транзистора, тут не 3, а 4 слоя полупроводника, что дало возможность блокировать прибор в открытом или закрытом состоянии без поддерживающего напряжения. Шокли был уверен, что это открытие не менее важно, чем транзистор, но на этот раз держал все в секрете даже от своих сотрудников, что привело его к почти параноидальному поведению. В довесок, нерешительность Шокли при управлении проектами не давала возможность немедленно пустить идею в производство. Это так расстроило его коллег, что 8 наиболее молодых из них потребовали сменить главу компании. Когда стало ясно, что навстречу им не пойдут, «вероломная восьмерка», как прозвала их жена Шокли, сама покинула компанию и в 1957 г. основала Fairchild Semiconductor для производства полупроводниковых транзисторов.На тот момент под полупроводником электронщики понимали прежде всего германий. Транзисторы из него получались хорошие, но p-n-переходы были термически нестабильны (при том, что прибор заметно грелся), а дороговизна затрудняла распространение. Однако в 1952 г. впервые получен кристаллический кремний, а через 2 года Texas Instruments (TI) применила его в транзисторе. В 1955 г. все в той же Bell Labs изобрели (точнее, впервые использовали для производственных целей) почти все основные технологические операции микроэлектроники: осаждение изолятора, фотолитографию с масками (для деталей аж в 200 микрон), травление и диффузию. Тогда же сделали и первый полевой транзистор - именно такие (в миллиардных количествах) находятся в современных чипах. И еще одно малоизвестное, но совершенно революционное открытие: в 1954 г. Чарлз Ли из Bell Labs изготовил транзистор с базой толщиной всего в 1 микрон и обнаружил, что он может работать на частоте до 170 МГЦ, что вдесятеро быстрее тогдашних аналогов [2,c. 31]. В 1952 г. британский электронщик Джэффри Даммер опубликовал идею об интегральной схеме (ИС) как о «твердом бруске без соединяющих проводов». В 1956 г. Даммер попытался сделать первую микросхему, но неудачно. Через 2 года недавно принятый в TI молодой инженер Джэк Килби почти в одиночку сидел все лето в лаборатории миниатюризации, т. к. компания не отпустила его в пока еще не заработанный отпуск. 24 июля 1958 г. Килби написал в своей записной книжке, что если элементы электрической схемы (резисторы, конденсаторы и транзисторы) сделать из одного материала, то они могут быть помещены на общую пластинку (на сленге - «вафлю», причем в оригинале говорится только так: wafer). А 12 сентября Килби построил первую ИС из пяти элементов, выполняющую роль генератора - хотя она еще не была однокристальной. Странно, что «нобелевки» за это достижение надо было ждать до 2000 г.Изобретение Килби имело большой недостаток - компоненты схемы соединялись золотыми проводками, что делало технологию малопригодной к дальнейшему уменьшению, усложнению и массовому производству. Однако к концу этого же 1958 г. Жан Эрни из Fairchild продемонстрировал размещение в кремнии областей с избытком электронов и дырок, вместе составляющих p-n-переход, над которым располагался изолятор из диоксида кремния. В изоляторе протравлено отверстие, которое заполняется алюминием, образующим контакт. А чешский физик Курт Леховец из калифорнийской компании Sprague Electric догадался использовать p-n-переход как изолятор [3]. Наконец, в 1959 г. Роберт Нойс из Fairchild объединил обе идеи с возможностью напылять тонкий слой металла на схему. Этот слой потом выборочно вытравливался, получая одновременно все необходимые межсоединения, что сделало возможным изготовление более сложной схемы за несколько шагов. Так был изобретен планарный технологический процесс.

Правда, пока этот процесс подходил лишь для изготовления отдельных кристаллов. Но уже тогда стало ясно, что микросхем понадобится не меньше, чем дискретных элементов, а значит их производство должно быть более массовым. К счастью, в 1958 г. Джэй Лэст и Роберт Нойс построили один из первых фотоповторителей, позволявших на одну пластину проецировать множество копий маски. А в 1961 г. выпущены первые промышленные фотоповторители с уменьшением изображения - теперь маску можно сделать в 5-10 раз больше, что упрощало процесс ее подготовки. Маски изготавливались переносом выполненных на прозрачной пленке чертежей на лист рубилита, в рубиновом слое которого координатограф полуручным способом гравировал оттиск. Сами чипы изготавливались из пластин диаметром всего 13? мм, введенных в 1960 г. Право называться первой коммерческой оспаривают микросхемы Fairchild и Texas Instruments. Кстати, Уильям Шокли также достиг массового производства своего диода, но так и не добился успеха - потому что появились микросхемы, где 3-6 транзисторов могли заменить такой диод. Впрочем, все микросхемы пока делались с биполярными транзисторами, и если бы так оставалось и впредь - не видать бы нам никаких персоналок и мобильников. Но в 1959 г. Джон Аталла и Дэвон Канг из Bell Labs изготовили полевой транзистор с изолированным затвором, чего не могли добиться с 1926 г., когда был открыт полевой эффект и указан его недостаток - поверхностные волны в металле не позволяли проникать полю затвора в канал. Получился всем сегодня известный «бутерброд»: металлический (Al) затвор, подзатворный оксид (SIO2) и канал-полупроводник (Si). И хотя первые два элемента уже давно делаются из других материалов, мы все еще называем это МОП-транзисторами. А в 1960 г. в Bell Labs изобрели еще один нужный для массового производства процесс - эпитаксиальное осаждение тонкого слоя на кристаллической подложке, снова обнаружив, что малая толщина базы ускоряет биполярный транзистор. В 1958 г. инженер Сеймур Крэй (уже тогда прослывший экспертом по компьютерам) устроился в компанию Control Data Corporation (CDC) на должность главного разработчика и сразу попросил фирму General Transistor изготовить быстрый германиевый транзистор для своей машины CDC 1604, ставшей в 1960 г. одним из первых коммерчески успешных диодно-транзисторных компьютеров (после IBM-овских моделей 1401 и 7090). Далее Крэй задался целью построить самый быстрый в мире компьютер (будущий CDC 6600), для чего ему нужен был транзистор со временем переключения менее 3 нс и способностью выдержать перегрев (ибо высокоплотный монтаж в электронике - тоже не сегодняшнее изобретение). Р-канальные полевые транзисторы (в большинстве из них канал между истоком и стоком открыт при отрицательном напряжении на затворе относительно истока) в то время получались медленнее биполярных, а производили их просто потому, что они получались дешевле. Более быстрые n-канальные (канал открыт при положительном напряжении на затворе) появились только в 1964 г. Крэй заплатил фирме Fairchild аж 500 000 долларов, и в 1961 г. Жан Эрни, используя легирование золотом и эпитаксиальное осаждение, получил кремниевый биполярный транзистор, работающий быстрее германиевых.

Появление и использование первых интегральных схем

12 апреля стало ясно, что СССР постоянно выигрывает у США в космической гонке. 15 апреля США начали операцию “Pluto” (более известную как “Высадка в заливе Свиней”) по свержению Фиделя Кастро, ставшую одним из самых больших провалов ЦРУ. Еще помнился перехват Гэри Пауэрса под Свердловском, когда президент Эйзенхауэр загнал себя и страну в ловушку, пытаясь скрыть разведывательный характер полета “U-2”.

Нужна была некая национальная идея - знакомо?… 25 мая только что избранный Джон Кеннеди во 2-й раз обратился к нации (что само по себе необычно - обращения являются ежегодными) и заявил: «Я хочу верить, что мы сможем доставить человека на Луну и вернуть обратно до конца этого десятилетия». В отличие от “построения коммунизма к 1980 г.”, о чем в октябре того же 1961 г. заявил Никита Хрущев, такая задача была не менее технической, чем идеологической. Помимо ракет и кораблей, надо было создать системы управления, которые сначала полетят на Луну в одиночку (в исследовательских миссиях), а затем будут отвечать за безопасность живых людей. А пока у США был лишь 15-минутный суборбитальный полет и слабые ракеты. Поэтому программе выделили астрономические деньги (в сегодняшних ценах - 170 млрд. долларов) и присвоили высший приоритет.

По микроэлектронной части роль главного героя отводилась навигационному компьютеру для Аполлонов (Apollo Guidance Computer, AGC). До того момента первые чипы были относительно медленные и продавались по цене в несколько раз больше аналогичного набора дискретных элементов. И только в авиакосмических применениях миниатюрность и энергоэффективность оказались важнее недостатков, хотя ИС содержали лишь несколько компонентов. Уже в 1961 г. коллега Килби Харви Крэгон сделал демонстрационный “Молекулярный электронный компьютер” для ВВС США, в котором 587 ИС производства TI заменяли 8500 отдельных деталей. В этом же году чипы Fairchild уже применялись в простых компьютерах.

AGC оказался намного сложнее, требуя около 4000 логических вентилей по 20-30 долларов каждый. До 1965 г. AGC оставался самым большим потребителем чипов как по количеству (200 000), так и по общей цене. Боб Кук из TI изготовил первые экономные ИС для блока астронавигации. Одновременно (в 1962 г.) TI выиграла контракт на изготовление 22 видов заказных микросхем для системы наведения ракет Minuteman II. К этой же задаче присоединились и другие компании, так что в 1965 г. ракетчики стали главными заказчиками ИС в США. Кстати, еще в 1961 г. британская Ferranti Semiconductor стала производить одно из первых в Европе семейств цифровой логики для миниатюризации бортовых систем в британских ВМС. В этом же году Стивен Хофстайн из RCA сделал самую сложную на тот момент 16-транзисторную ИС - но лишь для лабораторных исследований.

В 1963 г. вышли первые ТТЛ-чипы (транзисторно-транзисторная логика, самая популярная до конца 70-х), но главное - Фрэнк Уанласс из Fairchild показал, что симметричное спаривание p- и n-канальных МОП-транзисторов уменьшает потребление энергии при простое (когда транзисторы не переключаются) в миллион раз, назвав этот вид логики «комплементарная (структура) МОП» (КМОП). Впервые изготовленная через 2 года, она сразу стала использоваться в авиации и космосе, но быстро добралась и до коммерческих устройств. Изза использования медленных р-МОП-транзисторов на рекорды скорости поначалу такая логика не претендовала.

Когда массовое производство ИС стало исчисляться уже миллионами, оказалось, что с применением пластин большего диаметра себестоимость чипов падает, а массовость растет - и в 1964 г. введены 25 мм пластины, а через 2 года - на 38 мм. Однако уменьшать интегральные МОП-транзисторы оказалось труднее, чем биполярные, изза производственных сложностей и падения надежности. Причем эксперты чуть ли не соревновались по добавлению очередного аргумента в ряд «почему оно не будет работать» - так что это даже вылилось в пародию на известную индийскую притчу о слепцах, ощупывающих слона по частям, чтобы изучить его. В течение 1963-66 гг. специалисты из американских, европейских и японских компаний (в сотрудничестве и конкуренции) исследовали и решили большую часть вопросов надежности МОП-схем [4].

В 1964 г. General Microelectronics выпустила первый коммерческий р-МОП-чип - 120-тразисторный 20-битный регистр сдвига. Через год сделаны еще 23 заказных вида микросхем для первого настольного калькулятора на МОП-ИС (Victor Comptometer EC-3900), включая 600-тразисторный 100-битный регистр. К 1969 г. фирме Rockwell удалось сократить число калькуляторных чипов до 4, что позволило сделать портативные машины. В 1971 г. Mostek и TI представили однокристальные калькуляторные ИС (не считая внешнего контроллера экрана). До этого, в 1968 г. RCA показала чип статической памяти (СОЗУ) на 288 бит (почти 2000 транзисторов) и первое семейство простой КМОП-логики общего назначения. Таким образом, помимо военных заказов, во второй половине 60-х одним из локомотивов микроэлектроники стали простые настольные ЭВМ. Их было гораздо больше мэйнфреймов, хотя в последних ИС применялись тысячами.

Но главное - в течение 60-х гг. улучшения литографии позволяли увеличивать число транзисторов экспоненциальными темпами. Это заметил химик Гордон Мур, работавший тогда директором по НИОКР в Fairchild. В 1965 г. он написал внутренний доклад «Будущее интегральной электроники» с графиком, соединяющим 5 точек и связывающим число компонентов ИС и их минимальную цену для периода 1959-1964, и предсказанием развития на следующие 10 лет. Последнее основывалось на том, что число компонентов на чипе будет продолжать удваиваться каждый год. Чуть позже отредактированная версия появилась в виде статьи в журнале Electronics 19 апреля 1965 г.

Интересно, что в 1975 г. на ежегодной встрече Международной Организации Инженеров-Электронщиков (IEEE) Мур (уже как президент и исполнительный директор Intel) указал, что увеличение диаметра пластин, успехи в технологических процессах и “поумнение схем и устройств” позволило продолжиться прогнозу. Впрочем, Мур скорректировал свою закономерность до удвоения каждые 2 года, добавив в последние данные большую долю микропроцессоров как наиболее сложных логических (т. е. нерегулярных) схем. Предсказание оказалось самоподдерживающимся: теперь Гордон Мур уже не наносит на свой график очередные достижения, зато многочисленные фирмы (и, конечно, сама Intel) до сих пор стараются идти в ногу с прогрессией. Кстати, титул закона ей дал известный информатик Карвер Мид в 1980 г. Еще раз публично проверяя свое предсказание в 1995 г., Мур сделал вывод, что оно “не скоро остановится”.

Поясним, почему делается разделение между регулярными и нерегулярными дизайнами (чаще всего под ними понимают память и процессоры, соответственно). Регулярный чип имеет в 5-10 раз большую плотность размещения транзисторов, чем в логических схемах, где относительно мало повторяющихся элементов. Однако прогресс последних более сложен и приносит больше пользы. Проще говоря, если вам мало памяти, то можно ее набрать большим числом микросхем имеющегося объема. А вот с недостатком производительности ЦП так просто не сделаешь.

В 1963 г. Роберт Нормэн из Fairchild запатентовал то, что позже получило название статического ОЗУ (СОЗУ). Через 2 года кооперация фирм Scientific Data Systems и Signetics изготовила первый 8-битный биполярный чип памяти. В 1966 г. команда Тома Лонго из Transitron сделала свою версию 16-битного ОЗУ для МИНИЭВМ Honeywell Model 4200, что стало первым применением интегральной полупроводниковой памяти в коммерческих компьютерах. 64-битные чипы появились в 1968 г. в IBM (для первого в мире кэша), Fairchild, Intel и TI. В 1969 г. IBM представила 128-битную схему уже для основного ОЗУ выпущенного через 2 года компьютера System/370 модели 145 [5]. В 1970 г. 256-битный чип Fairchild использован в машине Burroughs Illiac IV. Ну а суперкомпьютер Cray 1 в 1976 г. имел 65 536 килобитных ИС от Fairchild. Из этой прогрессии ясно, почему Муру поначалу казалось, что удвоение транзисторов будет ежегодным - для памяти это оказалось проще.

В 1968 г. сделан настолько важный прорыв, что за следующие 35 лет ничего подобного с транзистором не случалось: Роберт Кервин, Доналд Кляйн и Джон Сэрэс из Bell Labs сменили материал затвора с алюминия на поликремний (поликристаллическая форма кремния, сильно легированная проводящими примесями). Не смотря на то, что его сопротивление больше, чем у металла (и потому контакт к затвору по-прежнему металлический), осаждение и выборочное вытравливание кремния для затвора позволило использовать его в качестве маски для формирования истока и стока, идеально подогнанных к его краям, поэтому поликремневый затвор называется самосовмещенным (self-aligned). Это резко снижает разброс характеристик, вызванный неидеальным наложением масок при литографическом формировании истока и стока. Меньший разброс улучшает надежность работы, а расположенные тесней части транзистора увеличивают скорость и плотность размещения самих транзисторов.

Некоторые микроэлектронные фабрики («фабы») до сих пор готовят чипы с почти тем же вариантом МОП-транзистора, что был изобретен в конце 60-х. В том же 1968 г. Федерико Фэггин и Том Кляйн из Fairchild переделали имеющуюся микросхему (8-канальный аналоговый мультиплексор) под новые транзисторы. Как часто бывает, не обошлось без обиженных: в 1965 г. Бойд Ваткинс представил почти такую же структуру на конференции General Microelectronics, но регистрация его патента почему-то задержалась до 1969 г.

Конец 60-х родил еще две «революции», одна из которых вам наверняка нравится, а вторая - наверняка нет… Восьмерка «молодых и дерзких» в 1968 г. ушла из Fairchild, и каждый основал свою компанию. В частности, Гордон Мур и Роберт Нойс основали Intel, а через год еще 5 «fairchildren» («прекрасных детей», еще одна кличка) основали AMD. Вообще, за 20 лет перебежчики из Fairchild зачали аж 65 разных компаний, но далеко не все оказались известными. После основания Intel сразу занялась производством - угадайте чего? Памяти - оказалось, что поликремниевый затвор ускоряет доступ в 3-5 раз и уполовинивает площадь по сравнению с обычным МОП-чипом той же емкости. Так что первой микросхемой Intel была i1101 - 256-битное ОЗУ (1969 г.).

Появление БИС микропроцессоров в 1970-е годы

Это десятилетие ознаменовалось прежде всего взлетом микропроцессоров. Конечно, активно продвигалась и память - в частности, динамическое ОЗУ (ДОЗУ, DRAM) стало не только емче и надежней, но и дешевле памяти на магнитных кольцах. Но именно в дизайне логических микросхем произошел прорыв: за 10 лет процессоры из 4-битных стали 32-битными, и для многих применений этого хватает до сих пор. «Центральный обработчик (компьютер) аэроданных» (Central Air Data Computer, CADC) - интегрированная система управления полетом для первых версий истребителя F-14 Tomcat. Ее МОП-ИС MP944 - первый в мире многокристальный процессор. Система конструировалась командой Стива Геллера и Рэя Холта из Garrett AIRESEARCH с 1968 по 1970 гг. CADC состоит из 20-битного аналого-цифрового преобразователя, ЦП и еще нескольких отдельных деталей. Процессор состоял из микросхем шести разных видов: параллельный умножитель, параллельный делитель, логика спецфункций, логика управления (до 3 штук), ОЗУ (до 3) и ПЗУ (до 19). Холт написал об этом ЦП в журнале Computer Design в 1971 г., но ВВС США засекретило статью аж до 1998 г. Фото чипов недоступны до сих пор…

В 1967 г. Ли Бойсел из Fairchild высказал идею, что весь компьютер может быть сделан на микросхемах. Компания наградила его должностью главы отдела разработки МОП-ИС, чтобы его идея стала явью. Но в 1968 г. Бойсел (с двумя коллегами) покинул Fairchild и основал фирму Four-Phase Systems. Их компьютер с первым в мире коммерческим однокристальным микропроцессором был показан в 1970 г. на конференции Fall Joint (сам ЦП был готов годом ранее). За год удалось продать 4 системы, еще за два - 347. Постоянно наращивая продажи, компания в конце концов была куплена корпорацией Motorola за 253 млн. долларов в 1982 г.

ЦП компьютера являлся 24-битным и состоял из трех чипов AL1, обрабатывающих по 8 бит с учетом переноса, являясь таким образом еще и первым наращиваемым или «бит-слайсовым» ЦП. Сам AL1 имел лишь АЛУ и 8 регистров, на что ушло, предположительно, более 4000 транзисторов. Впрочем, AL1 не называли микропроцессором и не продавали отдельно от «родного» компьютера. Однако когда в 1990 г. TI заявила, что именно она запатентовала 1-кристальный ЦП, Ли Бойсел собрал плату с одним AL1 (а не тремя) и принес ее прямо в зал суда для демонстрации работы.

4-битный ЦП Intel i4004.

Всемирно известный Intel i4004 являлся первым 1-кристальным коммерчески доступным ЦП, продававшимся в т. ч. отдельно (в отличие от AL1), хотя разработан был для конкретной модели калькулятора. Дизайнеры чипа - Федерико Фэггин и Тед Хофф из Intel и Масатоши Шима из Busicom. Этот 4-битный ЦП не умел наращивать разрядность, зато обошелся всего в 2300 транзисторов. Тем не менее, Фэггину пришлось применить разнообразные ухищрения, чтобы уместить чип в размерах, приемлемых для рентабельного производства и узкого 16-выводного корпуса. Пока десяток фирм упражнялись в попытках уместить на микросхеме все большее, IBM еще с 1970 г. пыталась решить не менее важную проблему - уменьшение удельной цены чипов памяти (на каждый бит), чтобы они вытеснили магнитную память. Первая микросхема динамического ОЗУ Intel i1102 в 1970 г. стоила 21 доллар (позже подешевев вдвое), а емкость имела всего 1 килобит. Группа Дэйла Критчлоу в IBM пыталась достичь цены в 1 миллицент/бит. Для этого другой группе под руководством Боба Деннара (изобретателя самой компактной и до сих пор применяемой во всех чипах ДОЗУ 1-транзисторной ячейки) поручили сделать исследование, из которого оказалось, что самый верный способ - уменьшить площадь ячейки уменьшением не числа транзисторов, как было до сих пор (ДОЗУ начинались с 3 транзисторов/бит), а самих транзисторов. Ведь еще в 1962 г. Томас Стэнли из RCA опубликовал аналитический доклад о том, что уменьшение особенно благотворно для МОП-структур, т. к. затвор, длина которого ограничивает скорость, лежит вдоль прибора, а не поперек.

На тот момент самый передовой техпроцесс имел технорму 5 мк. Критчлоу и Деннар пропорционально уменьшили все части транзисторов в 5 раз, обнаружив почти линейную зависимость основных параметров - скорости и потребления (помимо очевидного уменьшения площади). Результаты этих опытов были представлены на IEDM (International Electron Devices Meeting - международная встреча [разработчиков] электронных устройств, крупнейшая ежегодная конференция электронщиков) в 1972 г.; в этом же году похожую работу опубликовали Карвэр Мид и Брюс Хенейсен из Калифорнийского Института Технологий.

В течение еще двух лет были проведены дополнительные исследования, и в 1974 г. родилась ставшая классикой работа “Устройство ионно-имплантированных МОП-транзисторов очень малых физических размеров”. Хотя тогда это еще не все поняли, но предложенная теория масштабирования (по сути - научное подтверждение до тех пор эмпирической закономерности Мура) поставила окончательный крест на биполярных транзисторах, все еще применявшихся в самых быстрых логических чипах типа ЭСЛ (эмиттерно-связанная логика) - так что в 80-е уже и суперкомпьютеры перешли на МОП-ИС. А все потому, что биполярные транзисторы не масштабируют свои параметры также хорошо как полевые с уменьшением своих размеров.Но чтобы всемирная борьба за микроны (а позже - и нанометры) началась, не хватало еще одного: надо соответственно улучшить и параметры производящего оборудования. Ведь до тех пор все микросхемы делались контактным способом, когда маска буквально впечатывались в пластину и только после этого облучалась. Это порождало большое число осколков и пыли, выбиваемых с поверхности и загрязнявших пластину. Но в 1973 г. фирма Perkin Elmer (теперь это SVG Lithography) представила проекционный принтер - первый пример массовой фотолитографии. Применяя его с положительным фоторезистом (фоточувствительным материалом, растворяющимся после освещения), удалось добиться революционного прорыва в выходе годных (доля рабочих чипов среди изготовленных - важная характеристика реализации техпроцесса на конкретном фабе): плотность дефектов на единицу площади резко уменьшилась, т. к. физического контакта маски с пластиной больше нет. Сама маска теперь - кварцевая пластина с хромовым слоем, содержащим нужный рисунок.

Дополнительно к этому фабрики не забывали еще одну гонку - по уменьшению себестоимости пластины, что достигалось увеличением их массовости и диаметра. Последний вторую половину 60-х был на уровне 38 мм, но в 1970 г. внедрены пластины на 57 мм, в 1973 - на 76, в 1975 - на 100, а в 1979 - на 125 мм. Т. е. за 10 лет площадь пластин увеличилась в 5-7 раз, что сказалось и на числе производимых микросхем (как все это время росла средняя площадь самих чипов, покажем чуть позже). Таким образом, у мировой микроэлектронной промышленности появилась возможность следовать закону Мура не в ущерб себе, а как раз наоборот - с коммерческой выгодой.

Из других достижений 70-х: · появление программируемых пользователем ПЗУ: сначала однократных (1970 г.), потом стираемых ультрафиолетом (1971, придумал Дов Фроман из Intel);

· первые цифровые сигнальные процессоры: сначала - как сопроцессоры для ЦП (1978, хотя идея предложена в 1972), а затем и самостоятельные, с собственным ПЗУ и ОЗУ (1979);

· первые микроконтроллеры (TI TMS1000 в 1974 г. и Intel i8048 в 1975 г.), т. е. 1-кристальные компьютеры, которые в еще более интегрированной форме ныне зовутся системами-на-чипе (SOC);

· первый фотолитографический степпер (1978) - этот аппарат экспонирует пластину по частям, что позволило далее расти ее диаметру и увеличивать детализацию масок без побочных краевых эффектов.

Распространение архитектуры intel в 1980-е годы

Наверное, одно из самых больших событий в мировой микроэлектронике произошло в 1980 г., когда IBM, рассматривая ЦП Motorola и Intel, выбрала i8088 для выходящего через год IBM PC. Возможно, конкурент - 32-битный MC68000 - был слишком дорог (имея около 70 000 транзисторов против 29 300) или не был приспособлен для относительно дешевых систем (имея 16-битную шину данных). Intel же к тому времени переделала 16-битный i8086 для 8-битных чипсетов в виде i8088. В 1982 г. Motorola также выпустила урезанную версию с 8-битной шиной (MC68008), но было уже поздно. Неясно, как бы развивалась микроэлекторника, если бы IBM не стала экономить и выбрала куда более прогрессивную архитектуру MC68000. Тем более, что Apple в 1984 г. выбрала ее же для своих первых Макинтошей. Возможно, Intel по прежнему бы выпускала микросхемы памяти и простые 8-битные контроллеры. Особенно после провала своего первого (и заранее широко разрекламированного) 32-битного ЦП IAPX432, который должен был заменить архитектуру x86 [6].Однако ажиотажный успех первых PC (неожиданный даже для самой IBM, где к проекту относились с сомнением и считали его экспериментальным) поставил все на свои места: в Intel поняли, что миру будет нужно много «персональных процессоров», причем с регулярной сменой поколений. Непрофильные микросхемы постепенно отходили в сторону, уступая место процессорам x86. Интересно, что еще до успеха PC Intel успела продать несколько лицензий на производство аналогов i8086 другим компаниям; AMD свою получила уже в 1982 г., по распространенному заблуждению - изза политики IBM иметь нескольких поставщиков каждого важного компонента, чему Intel якобы вынужденно подчинилась. Так или иначе, потребовалось быстро обойти собственноручно созданных конкурентов, для чего выбрали улучшение не только микроархитектур ЦП, но и технологических процессов для их выпуска. Для Intel это не менее важно до сих пор, хотя большинство компаний (включая главного конкурента) давно перешли на модель «fabless foundry», т. е. бесфабричного разработчика и контрактного завода-производителя.

Вроде бы, все это должно было дать новый поток принципиальных достижений, продвигающих интегральную технику. Однако за следующие 10 лет таковых оказалось гораздо меньше, чем даже за 70-е, хотя количественный прогресс, диктуемый законом Мура, продолжался. Возможно, уже открытого хватало, чтобы двигаться вперед с обновлениями, прежде всего, технормы и числа слоев межсоединений. Помимо этого, промышленность не забывала наращивать и диаметр пластин: в 1981 г. - 150 мм, в 1985 - 200 (до сих пор используемые на не самых крутых фабах) и в 1996 - 300. Переход на пластины 450 мм сильно затянулся изза чрезвычайной дороговизны оборудования, покупку которого до 2020 г. смогут осуществить лишь небольшое количество компаний в мире, вследствие большой его дороговизны.

Развитие технологий литорафии 1990-е

До 90-х гг. фотолитография использовала ртутные газоразрядные лампы, отсекая из их света все, кроме нужной частоты, совпадающей с одним из пиков («линий») - G (436 нм), H (405) или I (365). После того, как мощности ламп стало не хватать для требуемой производительности, потребовалось внедрить эксимерный лазер, что сделали в 1982 г. в IBM (сам такой лазер изобретен в СССР в 1971 г.). В зависимости от газа он дает длину волны 248 (KRF), 193 (ARF) и 157 нм (F2). От фторовых лазеров, правда, отказались изза чрезвычайных технических проблем, решение которых не окупится преимуществами - дело в том, что сам воздух начинает поглощать излучение с длиной волны меньше 186 нм, так что весь литограф надо переделать под вакуум. Это его усложняет и удорожает с 40 до 50 млн. долларов, а сканеров фабу требуется несколько. Поэтому даже самые современные техпроцессы с технормами менее 30 нм все еще используют аргон-фторовый лазер. При этом переход на так называемый экстремальный ультрафиолет (ЭУФ, EUV) с длинами волн 13,5 нм и менее рано или поздно все равно состоится - и без вакуума тут точно не обойтись.

Тут надо сказать, почему формирование рисунка на поверхности приобретает большие сложности, когда его размер оказывается меньше длины волны экспонирующего света. Строго говоря, законы волновой оптики не запрещают формирование деталей с таким разрешением. Но начиная с этих размеров линейная оптика заменяется на куда более сложную дифракционную, требующую большую точность при всех операциях - с соответствующим влиянием на цены установок. С точки зрения теории стоит познакомиться с эмпирическим критерием разрешения Рэлея (о минимальном угловом расстоянии между точками), числовой апертурой (NA) и технологическим параметром k1. Тут укажем лишь, что этот k1 в идеале может опускаться до 0,25, но насколько конкретная установка и техпроцесс приближены к идеалу - зависит от их продвинутости.

Одна из таких продвинутых методик - вычислительная литография: использование масок, рисунок которых вычислен с учетом волновых свойств света с целью добиться большего разрешения или меньших искажений при данной длине волны. Первые подобные программы были написаны в начале 80-х и использовались лишь для оптимизации рисунка маски, т. к. недостаток вычислительной мощности позволял моделировать площадь всего в несколько квадратных микрон. К 1998 г., когда замаячил переход на 180 нм (первый техпроцесс с технормой меньше длины волны), мощность компьютеров уже сильно возросла, что позволило использовать более точные алгоритмы и модели. Для современных технорм требуются уже тысячи процессоров и недели расчетов, чтобы вычислить рисунки для десятков масок, необходимых самых сложным ИС [7].

К основным методам вычислительной литографии относятся фазосдвигающие маски (PSM) и оптическая коррекция близости (OPC). Используемая с 90-нанометрового процесса (2006 г.) технология PSM - это коррекция толщины отдельных «пикселей» маски для изменения их прозрачности, что меняет фазу проходящего сквозь них света. Учитывая волновые свойства, это позволит (не считаясь с длиной волны) экспонировать на фоторезисте рисунок, отдельные элементы которого либо усилены синфазным наложением волновых пиков, либо удалены противофазным - это увеличивает разрешение, приближая тот самый параметр k1 к идеалу. Более современная OPC искажает рисунок маски для компенсации ошибок получаемого изображения изза дифракции падающих волн. OPC нужна уже не для увеличения разрешения, а для исправления искажений одиночных структур, форма которых при таких размерах получается куда хуже, чем если бы элементы были регулярными.

OPC: требуется вычислить такую маску (зеленый контур), чтобы получаемый ею символ (красный) оказался как можно ближе к требуемому (синий).

Без коррекции толщина линий символа окажется больше или меньше в разных частях, в т. ч. за счет влияния соседних линий. Это может привести как к разрыву дорожки, так и к замыканию пары дорожек. Микроэлектронщики давно хотели использовать медные межсоединения вместо алюминиевых, т. к. удельное сопротивление меди меньше. Это значит, что «медные» чипы меньше выделяют тепла и быстрее работают, т. к. меньшая часть коммутируемого транзисторами тока уйдет в нагрев, а не в переключение других транзисторов. Однако если в линиях электропередач и прочих проводах медь применяется давно, то микроэлектроника не могла внедрить столь полезный металл десятки лет. Причина в том, что после осаждения меди при дальнейших процессах нагрева она диффундирует (внедряется) в подлежащие элементы, особенно в кремний, что даже получило термин «медное отравление».

В 1997 г. IBM наконец-то решила задачу. Сначала медь надо осадить. Но изза ее химической стойкости ее нельзя протравить плазмой сквозь окна в фоторезисте (не удалив при этом оставшуюся, т. е. маскирующую часть самого резиста), как это делается для алюминия. Вместо этого применяется «дамасская работа» (damascene): процесс, похожий на изготовление булатной стали с мелким орнаментом. Сначала в изоляторе протравливаются канавки для дорожек. Далее вся поверхность выстилается барьерным металлом (который чаще всего оказывается нитридом титана или вольфрама, что, строго говоря, относится к керамике), не допускающим диффузии, но пропускающим ток. Его толщина должна быть небольшой, т. к. его сопротивление все же меньше, чем даже у алюминия.

Далее на всю поверхность осаждают толстый слой меди, переполняющий канавки. Т. к. плазмохимическое травление (оно же - реактивное ионное травление, RIE) не подходит, используется химико-механическая планаризация (ХМП или CMP). До 90-х гг. она считалась слишком грязной и дефектной для тонкого производства, т. к. абразивные частицы полировальной пасты создавали острые осколки стираемого слоя, да и сама паста неидеально чистая. Но для медного слоя ХМП оказалась лучше имеющихся способов, т. к. процесс полировки металла останавливается на границе с изолятором (точнее, с его невытравленными частями, находящимися выше дна канавок). В результате на чипе остается очень плоский слой с внедренными медными дорожками, не выходящими по высоте из окружающего изолятора. Более того, так называемое двойное воронение позволяет одновременно получить еще и вертикальные проводящие окна, соединяющие текущий слой с предыдущим. Сверху все покрывается еще одним барьерным слоем, излишки которого вытравливаются над внутрислойным изолятором, но не над дорожками. После этого можно осаждать уже межслойный изолятор

Вывод
В настоящее время микроэлектроника переходит на качественно новый уровень - наноэлектронику. Наноэлектроника в первую очередь базируется на результатах фундаментальных исследований атомных процессов в полупроводниковых структурах пониженной размерности. Квантовые точки, или нульмерные системы, представляют собой предельный случай систем с пониженной размерностью, которые состоят из массива атомных кластеров или островков нанометровых размеров в полупроводниковой матрице, проявляющих самоорганизацию в эпитаксиальных гетероструктурах. Одним из возможных работ связанных с наноэлеткроникой является работы по созданию материалов и элементов ИК-техники. Они востребованы предприятиями отрасли и являются основой для создания в ближайшем будущем систем «искусственного» (технического) зрения с расширенным, по сравнению с биологическим зрением, спектральным диапазоном в ультрафиолетовой и инфракрасной областях спектра.

Системы технического зрения и фотонные компоненты на наноструктурах, способные получать и обрабатывать огромные массивы информации, станут основой принципиально новых телекоммуникационных устройств, систем экологического и космического мониторинга, тепловидения, нанодиагностики, робототехники, высокоточного оружия, средств борьбы с терроризмом и т.д. Применение полупроводниковых наноструктур значительно уменьшит габариты устройств наблюдения и регистрации, уменьшит энергопотребление, улучшит стоимостные характеристики и позволит использовать преимущества массового производства в микро- и наноэлектронике ближайшего будущего.

Список литературы
1. William F. Brinkman, Douglas E. Haggan, William W. Troutman. A History of the Invention of the Transistor and Where it will lead us // IEEE Journal of Solid-State Circuits. Vol.32, No.12. December 1997.

2. Hugo Gernsback. A Sensational Radio Invention // Radio News. September 1924.

3. Носов Ю. Парадоксы транзистора // Квант. 2006. № 1.

4. Малютин А. Е., Филиппов И. В. История электроники М.: Электронный учебник - РГРТА, 2006 - 357 C.

5. Pugh, Emerson W.; Johnson, Lyle R.; Palmer, John H. (1991). IBM"s 360 and early 370 systems. MIT Press. p. 34. ISBN 0-262-16123-0.

6. Veendrick, H.J.M. (2011). Bits on Chips. p. 253. ISBN 978-1-61627-947-9.

7. Грабовски Б. Краткий справочник по электронике - БХВ- Петербург. - Санкт-Петербург, 2002.- 108 с

8. Роман Морозов Кремниевый оверлорд. Бренд Intel, часть 1 // Железо: журнал. - 2011. - № 2 (84). - С. 84-87.

Размещено на .ru

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?