Электростатика проводников - Курсовая работа

бесплатно 0
4.5 51
Основы электростатики проводников: макроскопические электродинамические формы электромагнитных полей. Анализ электростатического поля проводников: энергия; проводящий эллипсоид; силы, действующие на проводник в поле; составление средних выравниваний.


Аннотация к работе
Предмет макроскопической электродинамики составляет изучение электромагнитных полей в пространстве, заполненном веществом. Как и всякая макроскопическая теория, электродинамика оперирует физическими величинами, усредненными по «физически бесконечно малым» элементам объема, не интересуясь микроскопическими колебаниями этих величин, связанными с молекулярным строением вещества.Как известно, в отношении электрических свойств все тела делятся на две категории - проводники и диэлектрики, причем первые отличаются от вторых тем, что всякое электрическое поле вызывает в них движение зарядов - электрический ток. Действительно, отличная от пули напряженность E привела бы к возникновению тока; между тем распространение тока в проводнике связано с диссипацией энергии и потому не может само по себе (без внешних источников энергии) поддерживаться в стационарном состоянии. Отсюда в свою очередь следует, что все заряды в проводнике должны быть распределены по его поверхности: наличие зарядов в объеме проводника непременно привело бы к возникновению электрического поля в нем. Задача электростатики проводников сводится к определению электрического поля в пустоте, вне проводников, и к определению распределения зарядов по поверхности проводников. Граничные условия для поля Е на поверхности проводника следуют из самого уравнения .Вычислим полную энергию U электростатического поля заряженных проводников: , где интеграл берется по всему объему пространства вне проводников. Преобразуем этот интеграл и получим выражение: , аналогичное выражению для энергии системы точечных зарядов. Заряды и потенциалы проводников не могут быть заданы одновременно произвольным образом; между ними существует определенная связь. Обратные выражения для потенциалов через заряды: , где коэффициенты составляет матрицу, обратную матрице коэффициентов . Вычислим изменение энергии системы проводников при бесконечно малом изменении их зарядов или потенциалов: .Их геометрический смысл явствует из того, что поверхности постоянных значений представляют собой соответственно эллипсоиды, однополостные гиперболоиды и двухполюсные гиперболоиды, причем все они софокусны с эллипсоидом Формулы преобразования от эллипсоидальных координат к декартовым получаются путем совместного решения трех уравнений и имеют вид Элемент длины в эллипсоидальных координатах имеет вид В качестве третьей координаты можно ввести полярный угол в плоскости Связь координат с координатами дается равенствамиВ электрическом поле на поверхность проводника действуют со стороны поля определенные силы. Плотность потока импульса в электрическом поле в пустоте определяется известным максвелловским тензором напряжений: Силе же, действующая на элемент df поверхности теле, есть поток «втекающего» в него извне импульса, т.е. равна . Учитывая, что у поверхности металла напряженность Е имеет только нормальную составляющую, получим или, вводя поверхностную плотность зарядов , . Таким образом, на поверхность проводника действуют силы «отрицательного давления». Получается интегрированием силы по всей его поверхности: Сила, действующая на проводник вдоль координатной оси q, есть , где под производной надо понимать изменение энергии при параллельном смещении данного тела как целого вдоль оси q.Проанализированы электростатическое поле проводников, энергия электростатического поля проводников, проводящий эллипсоид, силы, действующие на проводник в поле.

План
Содержание

Введение

1. Электростатическое поле проводников

2. Энергия электростатического поля проводников

3. Проводящий эллипсоид

4. Силы, действующие на проводник

Выводы

Список использованной литературы

Введение
Предмет макроскопической электродинамики составляет изучение электромагнитных полей в пространстве, заполненном веществом. Как и всякая макроскопическая теория, электродинамика оперирует физическими величинами, усредненными по «физически бесконечно малым» элементам объема, не интересуясь микроскопическими колебаниями этих величин, связанными с молекулярным строением вещества. Так. Вместо истинного «микроскопического» значения напряженности электрического поля е рассматривается ее усредненное значение, обозначаемое .

Основные уравнения электродинамики сплошных сред получаются посредством усреднения уравнений электромагнитного поля в пустоте. Такой переход от микро- к макроскопическим уравнениям был впервые произведен Лоренцем (H.A. Lorentz, 1902).

Вид уравнений макроскопической электродинамики и смысл входящих в них величин существенно зависят от физической природы материальной среды, а также от характера изменения поля со временем. Поэтому представляется рациональным производить вывод и исследование этих уравнений для каждой категории физических объектов отдельно.

Вывод
В данной работе рассмотрен предмет электростатики проводников. Проанализированы электростатическое поле проводников, энергия электростатического поля проводников, проводящий эллипсоид, силы, действующие на проводник в поле.

Размещено на .ru
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?