Электроснабжение населенного пункта Cвиридовичи - Курсовая работа

бесплатно 0
4.5 90
Выбор проводов линии, числа и места расположения трансформаторных подстанций. Расчет сечения проводов линии по методу экономических интервалов мощностей, токов короткого замыкания, аппаратов защиты, заземления. Мероприятия по защите от перенапряжений.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Все однородные потребители, присоединенные к данному участку линии, объединяют в группы и определяют их суммарную нагрузку отдельно по дневному Рд и отдельно по вечернему Рв максимумам. Для определения суммарной расчетной активной нагрузки всего населенного пункта делим все потребители по соизмеримой мощности на группы и определим расчетную нагрузку каждой группы по формулам: , (2.1) ко - коэффициент одновременности, принимается в зависимости от количества потребителей в группе и нагрузки на вводе (для жилых домов) (таблица 5.1 [1]). Для сельскохозяйственных потребителей при нагрузке 100% оно не должно выходить за пределы 5%, а при нагрузке 25% за пределы 0% от номинального. Для линии 1: Для дневного максимума: Для вечернего максимума: Проводим аналогичный расчет для остальных участков и результат сводим в табл.

Введение
Электрификация, то есть производство, распределение и применение электроэнергии во всех отраслях народного хозяйства и быта населения - один из важнейших факторов технического процесса.

Весь опыт развития электрификации показал, что надежное, высококачественное и дешевое электроснабжение можно получить только от крупных районных электростанций, объединенных между собой в мощные электрические системы. На крупных электростанциях районного масштаба с линиями передачи большого радиуса действия вырабатывается наиболее дешевая электроэнергия, прежде всего изза высокой концентрации ее производства, а также благодаря возможности размещать электростанции непосредственно у дешевых источников энергии - угля, сланцев, на больших реках.

Самый высокий показатель системы электроснабжения - надежность подачи электроэнергии. В связи с ростом электрификации с/х производства, особенно с созданием в сельском хозяйстве животноводческих комплексов промышленного типа всякое отключение - плановое, и особенно неожиданное, аварийное, наносит огромный ущерб потребителю и самой энергетической системе.

Электроснабжение производственных предприятий и населенных пунктов в сельской местности имеет свои особенности по сравнению с электроснабжением городов. Основные особенности: необходимость подводить электроэнергию к огромному числу сравнительно маломощных потребителей, рассредоточенных по всей территории; низкое качество электроэнергии; требования повышенной надежности и т.д.

Таким образом, можно сделать вывод о большом значении проблем электроснабжения в сельском хозяйстве. От рационального решения этих проблем в значительной степени зависит экономическая эффективность применения электроэнергии в сельскохозяйственном производстве.

1. Исходные данные

Таблица 1.1 Исходные данные для расчета линии высокого напряжения.

Отклонение напряжения на шинах, % Sk.з. на шинах ИП, МВА Соотношение мощностей DU100 DU25 Рп / Ро

7 -2 900 0,5

Таблица 1.2 Исходные данные по производственным потребителям.

№ п/п Наименование Номер шифра Дневной максимум, КВТ Вечерний максимум, КВТ

Рд Qд Рв Qв

1 Плотницкая 340 10 8 1 0

2 Хлебопекарня производительностью 3т/сутки 356 5 4 5 4

3 Пожарное депо на 1…2 автомашины 382 4 3 4 2

4 Административное здание на 15-25 рабочих мест 518 15 10 8 0

5 Дом культуры со зрительным на 150-200 мест 527 5 3 14 8

6 Фельдшерско-окушерский пункт 536 4 0 4 0

7 Магазин со смешанным ассортиментом 6-10 мест 553 4 0 4 2

8 Баня на 5 мест 559 3 2 3 2

2. Расчет электрических нагрузок в сетях

2.1 Расчет электрических нагрузок в сетях напряжением 380/220 В

Электрические нагрузки в сетях напряжением 380/220 В складываются из нагрузок жилых домов, общественных и коммунальных учреждений производственных потребителей, а также нагрузки наружного освещения.

Подсчет нагрузок по участкам линий проводят после выбора количества трансформаторных подстанций (ТП), места их установки и нанесения трассы линии на план объекта. Затем отходящие от ТП линии разбивают на участки длиной не более 100 м. Все однородные потребители, присоединенные к данному участку линии, объединяют в группы и определяют их суммарную нагрузку отдельно по дневному Рд и отдельно по вечернему Рв максимумам. При смешанной нагрузке создаются отдельные группы из потребителей жилых домов, производственных, общественных, коммунальных предприятий.

Для расчета электрических нагрузок вычерчиваем план населенного пункта в масштабе, располагаем на плане производственные нагрузки, группируем все коммунально-бытовые потребители, присваиваем номера группам.

Нагрузку на вводе в жилой дом определим по номограмме ([1], рис. 3.1.) исходя из существующего годового потребления электроэнергии (согласно заданию 850 КВТ·ч) на седьмой расчетный год. При годовом потреблении 1050 КВТ·ч/дом расчетная нагрузка на вводе составляет Рр.i.=2,3КВТ·ч/дом.

Для определения суммарной расчетной активной нагрузки всего населенного пункта делим все потребители по соизмеримой мощности на группы и определим расчетную нагрузку каждой группы по формулам: , (2.1)

, (2.2) где Рд, Рв - соответственно расчетная дневная и вечерняя нагрузка потребителей и их групп, КВТ;

n - количество потребителей в группе, шт.;

Рр - расчетная нагрузка на вводе к потребителю, КВТ;

кд, кв - соответственно коэффициент участия нагрузки в дневном и вечернем максимуме, для коммунальных потребителей (дома без электроплит) кд = 0,3, кв = 1 ([1], стр. 39);

ко - коэффициент одновременности, принимается в зависимости от количества потребителей в группе и нагрузки на вводе (для жилых домов) (таблица 5.1 [1]).

Первая группа: жилые дома (107 домов): Рд.1. = 0.258·2.3·107·0.3 = 19.1 КВТ, Рв.1. = 0.258·2.3·107·1 = 63.5 КВТ.

Вторая группа: административное здание, плотницкая, магазин,пожарное депо КВТ, (2.3)

КВТ. (2.4)

Коэффициент одновременности k0 = 0.775

Третья группа:дом культуры, хлебопекарня, баня, фельдшерско-акушерский пункт

Рд.3. = 0.775· (5 5 3 4) =13,18 КВТ, Рв.3. = 0.775· (3 4 2 0) =6,98 КВТ.

Коэффициент одновременности k0 = 0.775

Расчетная нагрузка уличного освещения определяется по формуле:

Вт =11.8 КВТ (2.5) где Руд.ул. = 5.5 Вт/м - удельная нагрузка на один погонный метр улицы, для поселковых улиц с асфальтобетонными и переходными типами покрытий с шириной проезжей части 5…7 м;

?ул. - общая длина улиц м;

Суммируя расчетные нагрузки всех трех групп

Данное действие производится согласно формуле: КВТ, (2.6)

КВТ. (2.7) где РБ - большая из нагрузок, КВТ;

?РД.i, ?РВ.i - соответственно надбавка соответствующая меньшей дневной и вечерней нагрузке, КВТ.

Расчетная мощность ТП определяется по вечернему максимуму нагрузки, т.к. он больший. С учетом уличного освещения расчетная мощность ТП определяется по формуле: РТП = РТП.В. РР.УЛ. = 77 11.8 = 88,8 КВТ. (2.8)

Определяем средневзвешенный коэффициент мощности по формуле: , (2.9) где cos?i - коэффициент мощности i-го потребителя;

Рі - мощность i-го потребителя, КВТ.

Таблица 2.1 коэффициенты мощности производственных потребителей.

№ Потребитель Рд, КВТ Qд, КВТ Рв, КВТ Qв, КВТ COSJД cosjв

1 Плотницкая 10 8 1 0 0,78 1

2 Хлебопекарня производительностью 3т/сутки 5 4 5 4 0,78 0,78

3 Пожарное депо на 1…2 автомашины 4 3 4 2 0,8 0,89

4 Административное здание на 15-25 рабочих мест 15 10 8 0 0,83 1

5 Дом культуры со зрительным на 150-200 мест 5 3 14 8 0,86 0,87

6 Фельдшерско-окушерский пункт 4 0 4 0 1 1

7 Магазин со смешанным ассортиментом 6-10 мест 4 0 4 2 1 0,89

8 Баня на 5 мест 3 2 3 2 0,83 0,83

Полная расчетная нагрузка на шинах ТП дневного максимума определяется по следующей формуле: КВ·А. (2.10)

Полная расчетная нагрузка на шинах ТП вечернего максимума определяется по следующей формуле: КВ·А.

Для определения числа ТП первоначально необходимо определить допустимые потери напряжения. Исходными данными для расчета электрических сетей являются допустимые нормы отклонения напряжения. Для сельскохозяйственных потребителей при нагрузке 100% оно не должно выходить за пределы 5%, а при нагрузке 25% за пределы 0% от номинального.

Допустимые потери напряжения в линиях 10КВ и 0,38КВ определяются путем составления таблиц отклонения напряжения. Как правило, при составлении таблиц рассматривают ближайшую и удаленную трансформаторные подстанции в режиме максимальной (100%) и минимально (25%) нагрузки. В нашем случае следует определить потери напряжения и надбавку для проектируемой ТП.

Определяем допустимые потери напряжения и надбавку трансформатора результаты сводим в таблицу 2.2.

Таблица №2.2. Определение допустимых потерь напряжения и оптимальных надбавок трансформатора

N п/п Элементы схемы Нагрузка

100% 25%

1 Шины питающей подстанции 7 -2

2 ВЛ - 10КВ -8 0,5

3 Трансформатор 10/0,38 КВ: надбавка потери напряжения 7,5 -4.0 7,5 -1.0

4 Линия 0,38 КВ потери во внутренних сетях потери во внешних сетях -1,5 -6 0 0

5 Отклонение напряжения у потребителя -5.0 5

Число ТП для населенного пункта определим по формуле: шт, (2.11)

Принимаем NТП=2 где F = 0.37 км2 - площадь населенного пункта;

?U%=6% - допустимая потеря напряжения, которая определена согласно табл. 2.2 (потери во внешних сетях).

Т.к. число ТП равно двум, то делим населенный пункт на две примерно равные зоны и дальнейший расчет производим для каждой зоны отдельно. В каждой зоне сгруппируем однородные потребители в группы и присвоим им номера 1, 2, 3 и т.д. На плане населенного пункта наметим трассы ВЛ 380/220В и разобьем их на участки не более 100 м.

На плане населенного пункта нанесем оси координат и определим координаты нагрузок групп жилых домов и отдельных потребителей для каждой из зон отдельно.

Определим нагрузки групп жилых домов отдельно для дневного и вечернего максимумов.

Расчетная нагрузка группы из 4 жилых домов: • дневная

КВТ;

• вечерняя

КВТ.

Расчетная нагрузка группы из 5 жилых домов: • дневная

КВТ;

• вечерняя

КВТ.

Расчетная нагрузка группы из 6 жилых домов: • дневная

КВТ;

• вечерняя

КВТ.

Расчетная нагрузка группы из 7 жилых домов: • дневная

КВТ;

• вечерняя

КВТ.

Полученные значения координат нагрузок, дневные и вечерние расчетные нагрузки, а также значения коэффициентов мощности (см. табл. 2.1) сведем в таблицу 2.3.

Таблица №2.3. Результат расчета нагрузок отдельных потребителей и групп однородных потребителей и их координат

Номер потребителей и групп Наименование потребителей Расчетная мощность, КВТ Координаты нагрузок Коэффициент мощности

Рд Рв х у cos?д cos?в

1-я зона

1 7 домов 2,27 7,57 358 205 0.9 0,93

3 4 дома 1,6 5,38 290 142 0.9 0,93

4 6 домов 2,1 6,9 210 185 0.9 0,93

5 4 дома 1,6 5,38 143 202 0.9 0,93

6 Баня на 5 мест 3 3 92 215 0.83 0.83

7 5 домов 1,83 6.1 410 125 0.9 0,93

8 Фельдшерско-окушерский пункт 4 4 460 125 1 1

9 5 домов 1,83 6.1 501 128 0.9 0,93

10 6 домов 2,1 6,9 560 132 0.9 0,93

11 4 дома 1,6 5,38 345 62 0.9 0,93

12 Дом культуры со зрительным на 150-200 мест 5 14 295 52 0.86 0,87

13 Хлебопекарня производительностью 3т/сутки 5 5 286 54 0,78 0,78

14 5 домов 1,83 6.1 220 62 0.9 0,93

15 6 домов 2,1 6,9 142 96 0.9 0,93

16 5 домов 1,83 6.1 52 102 0.9 0,93

Итого

2-я зона

17 7 домов 2,27 7,57 350 382 0.9 0,93

18 6 домов 2,1 6,9 350 450 0.9 0,93

19 4 дома 1,6 5,38 350 542 0.9 0,93

21 4 дома 1,6 5,38 302 294 0.9 0,93

22 Магазин со смешанным ассортиментом 6-10 мест 4 4 273 295 1 0,89

23 7 домов 2,27 7,57 200 297 0.9 0,93

24 5 домов 1,83 6.1 120 298 0.9 0,93

25 Пожарное депо на 1…2 автомашины 4 4 412 300 0,8 0,89

26 6 домов 2,1 6,9 490 302 0.9 0,93

27 Административное здание на 15-25 рабочих мест 15 8 556 303 0.83 1

28 Плотницкая 10 1 590 304 0,78 1

29 5 домов 1,83 6.1 596 314 0.9 0,93

30 6 домов 2,1 6,9 600 392 0.9 0,93

Итого

Определим центр нагрузок для каждой зоны по формуле: (2.12)

Аналогичным образом производим расчет центра нагрузки для второй зоны и получаем, что Х2 = 393м и Y2 = 348м

3. Определение допустимых потерь напряжения и оптимальных надбавок трансформатора

Составим расчетную схему низковольтной сети. Привяжем ее к плану населенного пункта и намеченным трассам низковольтных линий. Нанесем потребители, укажем их мощность, обозначим номера расчетных участков и их длину.

Определим нагрузки на участках низковольтной линии. Результаты расчета сводим в таблицу 3.1.

Рис. 1. Расчетная схема ВЛ 0,38 КВ для ТП1

Рис.2. Расчетная схема ВЛ 0,38 КВ для ТП2

ТП-1

Участок 9-10

Активная нагрузка для: • дневного максимума

КВТ, • вечернего максимума

КВТ.

Коэффициент мощности на участке для: • дневного максимума

• вечернего максимума

Полная нагрузка для: • дневного максимума

КВ·А, • вечернего максимума

КВ·А.

Участок 8-9

Активная нагрузка для: • дневного максимума

КВТ, • вечернего максимума

КВТ.

Коэффициент мощности на участке для: • дневного максимума

, • вечернего максимума

.

Полная нагрузка для: • дневного максимума

КВ·А,

• вечернего максимума

КВ·А.

Участок 7-8.

Активная нагрузка для: • дневного максимума

КВТ, • вечернего максимума

КВТ.

Коэффициент мощности на участке для: • дневного максимума

, • вечернего максимума

.

Полная нагрузка для: • дневного максимума

КВ·А, • вечернего максимума

КВ·А.

Участок 2-7.

Активная нагрузка для: • дневного максимума

КВТ, • вечернего максимума

КВТ.

Коэффициент мощности на участке для: • дневного максимума

, • вечернего максимума

.

Полная нагрузка для: • дневного максимума

КВ·А, • вечернего максимума

КВ·А.

Участок 2-1.

Активная нагрузка для: • дневного максимума

КВТ, • вечернего максимума

КВТ.

Коэффициент мощности на участке для: • дневного максимума

, • вечернего максимума

Полная нагрузка для: • дневного максимума

КВ·А, • вечернего максимума

КВ·А.

Участок ТП-2.

Активная нагрузка для: • дневного максимума

КВТ, • вечернего максимума

КВТ.

Коэффициент мощности на участке для: • дневного максимума

, • вечернего максимума

.

Полная нагрузка для: • дневного максимума

КВ·А, • вечернего максимума

КВ·А.

Участок 5-6

Активная нагрузка для: • дневного максимума

КВТ, • вечернего максимума

КВТ.

Коэффициент мощности на участке для: • дневного максимума

,

• вечернего максимума

Полная нагрузка для: • дневного максимума

КВ·А, • вечернего максимума

КВ·А.

Участок 4-5.

Активная нагрузка для: • дневного максимума

КВТ, • вечернего максимума

КВТ.

Коэффициент мощности на участке для: дневного максимума

,

• вечернего максимума

.

Полная нагрузка для: • дневного максимума

КВ·А, • вечернего максимума

КВ·А.

Участок 3-4.

Активная нагрузка для: • дневного максимума

КВТ, • вечернего максимума

КВТ.

Коэффициент мощности на участке для: • дневного максимума

, • вечернего максимума

Полная нагрузка для: • дневного максимума

КВ·А, • вечернего максимума

КВ·А.

Участок ТП-3

Активная нагрузка для: • дневного максимума

КВТ, • вечернего максимума

КВТ.

Коэффициент мощности на участке для: • дневного максимума

, • вечернего максимума

.

Полная нагрузка для: • дневного максимума

КВ·А, • вечернего максимума

КВ·А.

Участок 15-16

Активная нагрузка для: • дневного максимума

КВТ, • вечернего максимума

КВТ.

Коэффициент мощности на участке для: • дневного максимума

, • вечернего максимума

Полная нагрузка для: • дневного максимума

КВ·А, • вечернего максимума

КВ·А.

Участок 14-15

Активная нагрузка для: • дневного максимума

КВТ, • вечернего максимума

КВТ.

Коэффициент мощности на участке для: • дневного максимума

• вечернего максимума

.

Полная нагрузка для: • дневного максимума

КВ·А, • вечернего максимума

КВ·А.

Участок 13-14

Активная нагрузка для: • дневного максимума

КВТ,

• вечернего максимума

КВТ.

Коэффициент мощности на участке для: • дневного максимума

• вечернего максимума

.

Полная нагрузка для: • дневного максимума

КВ·А, • вечернего максимума

КВ·А.

Участок 12-13

Активная нагрузка для: • дневного максимума

КВТ, • вечернего максимума

КВТ.

Коэффициент мощности на участке для: • дневного максимума

• вечернего максимума

.

Полная нагрузка для: • дневного максимума

КВ·А, • вечернего максимума

КВ·А.

Участок 11-12

Активная нагрузка для: • дневного максимума

КВТ, • вечернего максимума

КВТ.

Коэффициент мощности на участке для: • дневного максимума

• вечернего максимума

.

Полная нагрузка для: • дневного максимума

КВ·А, • вечернего максимума

КВ·А.

Участок ТП-11

Активная нагрузка для: • дневного максимума

КВТ, • вечернего максимума

КВТ.

Коэффициент мощности на участке для: • дневного максимума

• вечернего максимума

.

Полная нагрузка для: • дневного максимума

КВ·А, • вечернего максимума

КВ·А.

Аналогичным образом рассчитываем оставшийся участки для ТП-2, полученные результаты занесем в таблицу 3.1

Таблица 3.1. Расчетная нагрузка на участках ВЛ 380/220 В. ТП1

Номер участка Расчетная мощность Рр.д., КВТ Расчетная мощность Рр.в., КВТ Коэффициент мощности cos?д Коэффициент мощности cos?в Максимальная полная мощность Sуч.д., КВ*А Максимальная полная мощность Sуч.в., КВ*А К-o одновременн Надбавка ?Рд КВТ Надбавка ?Рв КВТ Наружное освещение КВТ

9-10 2,1 6,9 0,9 0,93 2,333333 7,419355 - - - 0,4

8-9 2,9475 9,75 0,9 0,93 3,275 10,48387 0.75 - - 0,3

7-8 5,8 12,15 0,957575 0,950364 6,056969 12,78458 - 1.8 2.4 0,3

2-7 6,9 15,8 0,943766 0,943557 7,311136 16,74514 - 1.1 3.65 0,4

2-1 2,27 6,1 0,9 0,93 2,522222 6,55914 - - - 0,4

ТП-2 8,2 19,4 0,932932 0,939781 8,789496 20,64311 - 1.3 3.6 0,43

5-6 3 3 0,83 0,83 3,614458 3,614458 - - - 0,43

4-5 3,95 7,18 0,854348 0,8942 4,62341 8,029519 - 0.95 1.8 0,5

3-4 5,2 11,28 0,870194 0,911744 5,975679 12,37189 - 1.25 4.1 0,5

ТП-3 6,15 14,38 0,877207 0,91764 7,010886 15,67064 - 0.95 3.1 0,3

15-16 1,83 6,1 0,9 0,93 2,033333 6,55914 - - - 0,4

14-15 2,9475 9,75 0,9 0,93 3,275 10,48387 0.75 - - 0,5

13-14 3,583125 11,8875 0,9 0,93 3,98125 12,78226 0.75 - - 0,3

12-13 7,15 14,8875 0,830095 0,885588 8,613468 16,81086 - 2.15 3 0,2

11-12 10,15 23,3875 0,842402 0,878034 12,04888 26,63622 - 3 8.5 0,2

ТП-11 11,1 26,5375 0,850245 0,887752 13,05506 29,89291 - 0.95 3.15 0,4

Таблица 3.1. Расчетная нагрузка на участках ВЛ 380/220 В. ТП2

Номер участка Расчетная мощность Рр.д., КВТ Расчетная мощность Рр.в., КВТ Коэффициент мощности cos?д Коэффициент мощности cos?в Максимальная полная мощность Sуч.д., КВ*А Максимальная полная мощность Sуч.в., КВ*А К-т одновременн Надбавка ?Рд КВТ Надбавка ?Рв КВТ Наружное освещение КВТ

18-19 1,6 5,38 0,9 0,93 1,777778 5,784946 - - - 0,5

17-18 2,775 9,21 0,9 0,93 3,083333 9,903226 0.75 - - 0,5

ТП-17 3,78375 12,585 0,9 0,93 4,204167 13,53226 0.75 - - 0,4

23-24 1,83 6,1 0,9 0,93 2,033333 6,55914 - - - 0,3

22-23 3,075 10,2525 0,9 0,93 3,416667 11,02419 0.75 - - 0,41

21-22 5,8 12,6525 0,956537 0,918774 6,063539 13,77107 - 1.8 2.4 0,53

20-21 6,75 15,8025 0,944313 0,922123 7,148055 17,13708 - 0.95 3.15 0,2

ТП-20 6,75 15,8025 0,944313 0,922123 7,148055 17,13708 - - - 0,72

29-30 2,1 6,9 0,9 0,93 2,333333 7,419355 - - - 0,41

28-29 2,9475 9,75 0,9 0,93 3,275 10,48387 0.75 - - 0,37

27-28 11,8 10,35 0,807318 0,936512 14,6163 11,05165 - 1.8 0.6 0,2

26-27 22,3 15,15 0,820013 0,96419 27,19469 15,71266 - 7.3 4.8 0,4

25-26 23,55 19,25 0,826897 0,953491 28,47996 20,18896 - 1.25 4.1 0,5

ТП-25 25,95 21,65 0,822992 0,942568 31,53129 22,96916 - 2.4 2.4 0,4

5.84

Зная расчетную нагрузку на участках линии, уточним суммарную нагрузку на шинах ТП. Она получается путем суммирования расчетных нагрузок отходящих от ТП линий (для ТП1 участки ТП1-2, ТП1-3, ТП1-11; для ТП2 участки ТП2-17, ТП2-20, ТП2-25).

ТП1: КВТ, КВТ.

ТП2: КВТ, КВТ.

Т.к. расчетная нагрузка в вечерний максимум выше, то расчет мощностей ТП ведем по вечернему максимуму.

Активная нагрузка ТП1 и ТП2 с учетом уличного освещения определим по формуле:

КВТ, КВТ

Определим более точные значения коэффициента мощности для ТП1 и ТП2 по формуле: Для ТП1: .

Для ТП2:

Определим полные расчетные мощности ТП по формуле: Для ТП1: КВ·А.

Для ТП2: КВ·А.

По полной расчетной мощности выбираем мощность и тип трансформатора. Согласно ([2], приложение 19) выбираем для ТП1 и ТП2 трансформатор ТМ63-10/0,4 со следующими техническими данными: Номинальная мощность STP, КВ·А ………………………………… 63

Схема соединения обмоток ……………………………………..Y/Ун-0

Потери холостого хода ?РХХ, Вт ………………………………….. 240

Потери короткого замыкания ?РКЗ, Вт ………………………….. 1280

Напряжение короткого замыкания UКЗ, % от UH …………………. 4,5

Находим экономические нагрузки на участках по формуле: , где SУЧ - полная мощность участка, КВ·А;

КД = 0,7 - коэффициент динамики роста нагрузок ([3], стр. 28).

Произведем расчет для ТП1: Дневной максимум: Вечерний максимум: КВ·А; КВ·А;

КВ·А; КВ·А;

КВ·А; КВ·А;

КВ·А; КВ·А;

КВ·А; КВ·А;

КВ·А; КВ·А;

КВ·А. КВ·А.

КВ·А; КВ·А;

КВ·А; КВ·А;

КВ·А; КВ·А;

КВ·А. КВ·А.

КВ·А; КВ·А;

КВ·А; КВ·А;

КВ·А; КВ·А;

КВ·А; КВ·А;

КВ·А; КВ·А;

Проводим аналогичный расчет для ТП2 и результат расчета сводим в табл. 2.5.

По экономическим интервалам нагрузок ([2] приложение 32) выберем марку и сечение проводов. Минимальное допустимое сечение по механической прочности 25 мм2 для проводов марки «А» ([4], таблица 3.2). В целях удобства монтажа и эксплуатации ВЛ рекомендуется применять не более 3…4 сечений. Первоначально на всей линии используем провод А25.

Район по гололеду 1-й. Для 1-ой группы по скоростному напору ветра V = 16 м/с и наибольшей стреле провеса среднегеометрическое расстояние между проводами D не менее 400 мм.

Определяем фактические потери напряжения на участках и сравним их с допустимыми (согласно табл. 2.2 допустимая потеря напряжения не должна превышать для ВЛ 0,38 КВ (внешние сети) 6%).

, где SУЧ - полная мощность участка, КВ·А;

?УЧ - длина участка, км;

UH - номинальное линейное напряжение, КВ;

r0 - удельное активное электрическое сопротивление провода постоянному току при 20 0С, Ом/км (принимаем согласно [2] приложение 1);

х0 - индуктивное сопротивление для ВЛ, Ом/км (принимаем согласно [2] приложение 15) при среднем геометрическом расстоянии между проводами 400 мм;

Для линии 1: Для дневного максимума: В;

В;

В;

В;

В;

В;

Для вечернего максимума: В;

В;

В;

В;

В;

В;

Определим потерю напряжения на участках в % по следующей формуле: , где UH - номинальное линейное напряжение, В.

Для линии 1: Для дневного максимума:

Для вечернего максимума:

Проводим аналогичный расчет для остальных участков и результат сводим в табл. 2.5. Затем следует произвести проверку на соответствии потери напряжения в конце линий. Если сумма потерь напряжения участков будет большей, чем 3.5%, то необходимо на первом участке от ТП увеличить сечение провода на одну ступень (например, вместо А25 взять А35), что приведет к изменению r0 и х0, а следовательно и к уменьшению потерь напряжения. Замену проводов на участках производить до тех пор, пока потери напряжения не войдут в допустимые пределы. Максимально возможное сечение проводов для ВЛ 0,38 КВ (в крайних случаях) составляет 70 мм2, т.е. провод А70.

Таблица №2.5. Результат расчета ВЛ 0,38 КВ

Номер участка Экономическая нагрузка Sэ.д., КВА Экономическая нагрузка Sэ.в., КВА Марка и сечение проводов Сопротивление проводов ?Uд, В ?Uв, В ?Uд, % ?Uв, %

Активное ro, Ом/км Реактивное хо, Ом/км

ТП1

9-10 1,6333 5,1948 4А25 А25 1.14 0.319 0,54 1,65 0,136 0,43

8-9 2,2925 7,34 4А25 А25 1.14 0.319 0,48 1,55 0,127 0,41

7-8 4,2478 8,9496 4А25 А25 1.14 0.319 0,98 2,07 0,258 0,54

2-7 5,1175 11,726 4А25 А25 1.14 0.319 1,55 3,54 0,407 0,93

2-1 1,7656 4,5918 4А25 А25 1.14 0.319 0,62 1,63 0,163 0,42

ТП-2 6,1527 14,458 4А25 А25 1.14 0.319 1,64 3,85 0,430 1,01

5-6 2,5302 2,5302 4А25 А25 1.14 0.319 0,64 0,64 0,169 0,16

4-5 3,2367 5,6204 4А25 А25 1.14 0.319 1,11 1,96 0,292 0,51

3-4 4,1825 8,6603 4А25 А25 1.14 0.319 1,52 3,20 0,399 0,84

ТП-3 4,907 10,965 4А25 А25 1.14 0.319 1,11 2,52 0,291 0,66

15-16 1,4233 4,5918 4А25 А25 1.14 0.319 0,45 0,97 0,118 0,25

14-15 2,2925 7,338 4А25 А25 1.14 0.319 0,80 2,46 0,211 0,64

13-14 2,7865 8,9471 4А25 А25 1.14 0.319 0,59 1,90 0,154 0,50

12-13 6,0228 11,776 4А25 А25 1.14 0.319 0,92 1,84 0,241 0,48

11-12 8,4317 18,646 4А25 А25 1.14 0.319 1,44 3,23 0,378 0,85

ТП-11 9,1343 20,924 4А25 А25 1.14 0.319 2,50 5,83 0,658 1,53

ТП2

18-19 1,2444 4,0495 4А25 А25 1.14 0.319 0,45 1,50 0,120 0,39

17-18 2,1583 6,9323 4А25 А25 1.14 0.319 0,79 2,57 0,209 0,67

ТП-17 2,9429 9,4726 4А25 А25 1.14 0.319 0,82 2,68 0,217 0,70

23-24 1,4233 4,5914 4А25 А25 1.14 0.319 0,36 1,17 0,095 0,31

22-23 2,3917 7,7169 4А25 А25 1.14 0.319 0,58 1,91 0,154 0,50

21-22 4,2445 9,6397 4А25 А25 1.14 0.319 1,13 2,55 0,298 0,67

20-21 5,0036 11,996 4А25 А25 1.14 0.319 0,71 1,69 0,187 0,44

ТП-20 5,0036 11,996 4А25 А25 1.14 0.319 0,71 1,69 0,187 0,44

29-30 1,6333 5,1935 4А25 А25 1.14 0.319 0,30 0,96 0,080 0,25

28-29 2,2925 7,3387 4А25 А25 1.14 0.319 0,42 1,36 0,112 0,36

27-28 10,231 7,7362 4А25 А25 1.14 0.319 1,04 0,82 0,276 0,21

26-27 19,036 10,998 4А25 А25 1.14 0.319 4,17 2,48 1,097 0,65

25-26 19,936 14,132 4А25 А25 1.14 0.319 5,66 4,13 1,492 1,08

ТП-25 22,071 16,078 4А25 А25 1.14 0.319 5,12 3,85 1,349 1,01

Проведем проверку на соответствие потери напряжения в линиях.

ТП1

Линия ТП1-2: • дневной максимум: ?UД% =0.136 0.127 0.258 0.407 0.163 0.43=1.5% < 6%;

• вечерний максимум: ?UB% =0.43 0.41 0.54 0.93 0.42 1.01=3.74% < 3.5%.

Линия ТП1-3: • дневной максимум: ?UД% =0.169 0.292 0.399 0.291=1.15% < 6%;

• вечерний максимум: ?UB% =0.16 0.51 0.84 0.66=2.17% < 6%.

Линия ТП1-11: • дневной максимум: ?UД% =0.118 0.211 0.154 0.241 0.378 0.658=1.76% < 6%;

• вечерний максимум: ?UB% =0.25 0.64 0.5 0.48 0.85 1.53=4.25% < 6%.

Остальные потери рассчитываем по аналогии и сводим в таблицу № 3.2

Таблица № 3.2 потери напряжения в линии.

Участки ТП ?UД% ?UB%

ТП1

ТП-2 1.5 3.74

ТП-3 1.15 2.17

ТП-11 1.76 4.25

ТП2

ТП-17 0.55 1.78

ТП-20 0.92 2.38

ТП-25 1.35 1.01

Потери в конце линий не превышает допустимых значений, о чем свидетельствует вышеприведенная проверка.

4. Электрический расчет сети 10КВ

Электрический расчет сети 10КВ производится с целью выбора сечения и марки проводов линии, питающей ТП, а также проверки качества напряжения у потребителя. При расчете пользуемся методом расчета электрических сетей по экономическим интервалам нагрузок.

Рис. 3. Расчетная схема линии 10 КВ

4.1 Определение расчетных нагрузок

Расчетные максимальные нагрузки (отдельно - дневные и вечерние) участков сети определяются по сумме расчетных мощностей населенных пунктов, расположенных за этим участком, по следующей формуле: Рр = Рнаиб. SDP, (4.1) где Рр - расчетное значение максимальной мощность, КВТ;

Рнаиб. - наибольшее значение мощности, КВТ;

SDP - сумма надбавок (таблица 3.10 [3]), КВТ.

Пользуясь расчетной схемой высоковольтной сети определяем максимальные нагрузки. Расчеты сводим в таблицу 4.1.

Таблица 4.1 Расчет максимальных нагрузок сети 10КВ.

Участок сети Расчет максимальной нагрузки

7-8 Р7-8д = Р8д =70 КВТ, Р7-8в = Р8в =100 КВТ

7-9 Р7-9д = Р 9д =160 КВТ, Р7-9в = Р 9в =200 КВТ, 6-7 Р6-7д = Р7-9д DP7-8Д DP7Д =160 52 115=327 КВТ, Р6-7в= Р 7в DP7-8в DP7-9в =250 74.5 155=479.5 КВТ, 6-10 Р6-10д = Р 10д =200 КВТ, Р6-10в = Р10в =75КВТ, 1-6 Р1-6д = Р 6-7д DP6-10д DP6д =327 155 15.1=497.1 КВТ, Р1-6в = Р6-7в DP6-10в DP6в =479.5 56 74.5=610 КВТ

3-5 Р3-5д = Р5д =51.85 КВТ, Р3-5в = Р5в =86.19 КВТ

3-4 Р3-4д = Р4д = 120 КВТ, Р3-4в = Р4в = 150 КВТ

2-3 Р2-3д = Р3-4д DP3-5д DP3д =120 37 36.5=193.5 КВТ, Р2-3в = Р3-4в DP3-5в DP3в =150 65 67=282 КВТ

1-2 Р1-2д = Р2-3д DP 2д =193.5 115=308.5 КВТ, Р1-2в = Р 2-3в DP2в =282 59.5=341.5 КВТ, ИП-1 РИП-1д =Р1-6д DP1-2д DP1д =497.1 243 32.4 =772.5 КВТ, РИП-1в = Р1-6в DP1-2в DP1в =610 267 63=940 КВТ

4.2 Определение средневзвешенного коэффициента мощности

Далее рассчитываем средневзвешенный коэффициент мощности по следующей формуле: (4.2)

где Pi - расчетная мощность i - го потребителя, КВТ;

Таблица 4.2 Значения cosj для всех участков линии.

Номер НП Рд/Рв cosjд cosjв

1 0.53 0.88 0.93

2 1,88 0.73 0.73

3 0.56 0.88 0.93

4 0.8 0.83 0.91

5 0.6 0.81 0.84

6 2.3 0.73 0.73

7 0.6 0.88 0.93

8 0.7 0.83 0.91

9 0.8 0.83 0.91

10 2.67 0.73 0.73

Пользуясь расчетной схемой, определяем средневзвешенный коэффициент мощности: Участок сети 7-8:

Участок сети 7-9

Участок сети 6-7

Участок сети 6-10

Участок сети 1-6

Участок сети 3-5

Участок сети 3-4

Участок сети 2-3

Участок сети 1-2

Участок сети ИП-1

4.3 Определение полных мощностей на участках сети.

Определяем полную расчетную мощность на всех участках сети, КВА по следующей формуле: (4.3) где Рр - расчетная мощность на участке, КВТ;

cosj - коэффициент мощности.

4.4 Определение эквивалентной мощности

Определяем эквивалентную нагрузку по следующей формуле

Получаем: Участок сети 7-8

Участок сети 7-9

Участок сети 6-7

Участок сети 6-10

Участок сети 1-6

Аналогичным образом определяем эквивалентную мощность на других участках сети. Полученные значения сводим в таблицу 4.3.

Таблица 4.3 Результаты расчетов полной и эквивалентной мощностей.

Участок сети Рд, Рв, cos?д cos?в Sд, Sв, Sэд, Sэв, КВТ КВТ КВА КВА КВА КВА

7-8 70 100 0,83 0,91 84,33735 109,8901 59,03614 76,92308

7-9 160 200 0,83 0,91 192,7711 219,7802 134,9398 153,8462

6-7 327 479,5 0,849737 0,919091 384,825 521,7112 269,3775 365,1978

6-10 200 75 0,73 0,73 273,9726 102,7397 191,7808 71,91781

1-6 497,1 610 0,801189 0,868532 620,4529 702,3346 434,317 491,6342

3-5 51,85 86,19 0,81 0,84 64,01235 102,6071 44,80864 71,825

3-4 120 150 0,83 0,91 144,5783 164,8352 101,2048 115,3846

2-3 193,5 282 0,836595 0,897022 231,2948 314,3736 161,9064 220,0615

1-2 308,5 341,5 0,790047 0,860111 390,4832 397,0418 273,3383 277,9292

ИП-1 772,5 940 0,801317 0,870798 964,0376 1079,469 674,8263 755,6286

4.5 Определение сечения проводов на участках линии

В целях удобства монтажа и эксплуатации ВЛ рекомендуется применять не более 3 - 4 сечений.

Толщина слоя гололеда b = 5 мм. Район по гололеду - I.

Подбираем: Участок 8-7: Интервал экономических нагрузок до 400КВА. Выбираем провод

АС-25 (по минимально допустимой прочности сечение для ВЛ 10КВ-АС-35).

Аналогичным образом предварительно подбираем сечения проводов для других участков. Результаты сводим в таблицу 4.4.

4.6 Определение потерь напряжения на участках линии

Потеря напряжения на участке сети определяется по следующей формуле: (4.5)

(4.6) где Sуч - расчетная мощность участка сети, КВА;

l - длина участка, км;

r0 х0 - активное и инлуктивное сопротивление проводов: для провода АС-35: r0=0.973 a x0=0.352, для провода АС-50: r0=0.592 a x0=0.341; для провода АС-70: r0=0.42 a x0=0.327

Участок 7-8

Участок 7-9

Участок 6-7

Участок 6-10

Участок 1-6

Аналогичным образом рассчитываем потери напряжения на остальных участках линии. Результаты расчетов сводим в таблицу 4.5.

Таблица 4.4 Результаты расчетов линии 10КВ (по большей нагрузке).

Участок Мощность Длина участка, км Марка Потери напряжения на участках,%

Активная, КВТ Полная, КВА Эквивалентная, КВА провода

7-8 100 84,34 76,92 3,3 АС-35 0,308

7-9 200 192,77 153,85 1,7 АС-50 0,256

6-7 479,5 384,83 365,20 3 АС-70 1,322

6-10 75 273,97 71,92 3,3 АС-35 0,273

1-6 610 620,45 491,63 2,3 АС-50 0,851

3-5 86,19 64,01 71,83 2,4 АС-35 0,207

3-4 150 144,58 115,38 3,2 АС-50 0,359

2-3 282 231,29 220,06 4 АС-70 0,656

1-2 341,5 390,48 277,93 4,4 АС-70 0,922

ИП-1 940 964,04 755,63 4,6 АС-70 2,614

Падение напряжение для участков, связывающих эти точки линии с ИП, будет определяется следующим образом: Линия Л1: DUИП-4=DUИП-1 DU1-2 DU2-3 DU3-4 =2,614 0,922 0,656 0,359=4.56%

Линия Л2: DUИП-8=DUИП-1 DU1-6 DU6-7 DU 7-8 =2,614 0,851 1,322 0,308=5.1%

Линия Л3: DUИП-10=DUИП-1 DU1-6 DU6-10=2,614 0,851 0,273=3.74%

Если падение напряжения не будет входить в допустимые пределы, то увеличиваем сечение, начиная с первого участка, до тех пор, пока падение напряжения не будет удовлетворять норме(8.0% в данном случае)

Наибольшее значение падения напряжения DUНАИБ. = DUИП-5 = 5.1%, Проверяем условие DUДОП ? DUНАИБ, DUДОП - потеря напряжения в сети 10 КВ (таблица 3.2), DUДОП =8 %.

Так как условие 8 >5.1 выполняется, делаем вывод, что сечения и марки проводов выбраны верно.

5. Определение потерь электрической энергии

5.1 Определение потерь электрической энергии в сетях 0.38КВ

Потери электрической энергии определяются по следующей формуле:

(5.1) где S0-полная мощность на участке;

r0 - удельное электрическое сопротивление проводов, Ом/км;

l - длина участка, км;

t - время максимальных потерь, ч.

Аналогичным образом рассчитываем потери электрической энергии на других участках линии. Полученные данные сводим в таблицу 5.1

Таблица 5.1 Потери электрической энергии в линии 0.38КВ

Номер участка Длина участка ?уч, км Расчетная мощность Рр., КВТ Коэффициент мощности cos? Максимальная полная мощность Sуч, КВА Марка и сечение проводов Активное сопротивление проводов ro, Ом/км Время использования максимальной нагрузки Тмах, ч Время потерь ?, ч Потеря энергии на участке ?Wв, КВТ·ч

ТП1

9-10 0,072 6,9 0,93 7,419355 4А25 А25 1.14 900 400 28,16

8-9 0,048 9,75 0,93 10,48387 4А25 А25 1.14 900 400 37,49

7-8 0,052 12,15 0,950364 12,78458 4А25 А25 1.14 1200 450 80,52

2-7 0,068 15,8 0,943557 16,74514 4А25 А25 1.14 1200 450 180,64

2-1 0,08 6,1 0,93 6,55914 4А25 А25 1.14 900 400 24,45

ТП-2 0,06 19,4 0,939781 20,64311 4А25 А25 1.14 1200 450 242,23

5-6 0,06 3 0,83 3,614458 4А25 А25 1.14 900 400 5,57

4-5 0,08 7,18 0,8942 8,029519 4А25 А25 1.14 900 400 36,65

3-4 0,084 11,28 0,911744 12,37189 4А25 А25 1.14 1200 450 121,81

ТП-3 0,052 14,38 0,91764 15,67064 4А25 А25 1.14 1200 450 120,98

15-16 0,072 6,1 0,93 6,55914 4А25 А25 1.14 900 400 22,01

14-15 0,08 9,75 0,93 10,48387 4А25 А25 1.14 900 400 62,48

13-14 0,048 11,8875 0,93 12,78226 4А25 А25 1.14 1200 450 74,30

12-13 0,036 14,8875 0,885588 16,81086 4А25 А25 1.14 1700 750 136,54

11-12 0,04 23,3875 0,878034 26,63622 4А25 А25 1.14 2200 1000 492,91

ТП-11 0,064 26,5375 0,887752 29,89291 4А25 А25 1.14 2200 1000 993,29

ТП2

18-19 0,084 5,38 0,93 5,784946 4А25 А25 1.14 900 400 8,88

17-18 0,084 9,21 0,93 9,903226 4А25 А25 1.14 900 400 26,02

ТП-17 0,064 12,585 0,93 13,53226 4А25 А25 1.14 1200 450 41,64

23-24 0,058 6,1 0,93 6,55914 4А25 А25 1.14 900 400 7,88

22-23 0,056 10,2525 0,93 11,02419 4А25 А25 1.14 1200 450 24,18

21-22 0,06 12,6525 0,918774 13,77107 4А25 А25 1.14 1200 450 40,42

20-21 0,032 15,8025 0,922123 17,13708 4А25 А25 1.14 1200 450 33,39

ТП-20 0,092 15,8025 0,922123 17,13708 4А25 А25 1.14 1200 450 95,99

29-30 0,056 6,9 0,93 7,419355 4А25 А25 1.14 900 400 9,73

28-29 0,056 9,75 0,93 10,48387 4А25 А25 1.14 900 400 19,44

27-28 0,032 10,35 0,936512 11,05165 4А25 А25 1.14 1700 750 23,14

26-27 0,068 15,15 0,96419 15,71266 4А25 А25 1.14 1700 750 99,40

25-26 0,088 19,25 0,953491 20,18896 4А25 А25 1.14 1700 750 212,38

ТП-25 0,072 21,65 0,942568 22,96916 4А25 А25 1.14 2200 1000 299,89

5.2 Определение потерь электрической энергии в линии 10КВ

Расчет ведем так же как и для линии 0.38КВ.

Аналогичным образом рассчитываем потери энергии на остальных участках. Результаты расчетов сводим в таблицу 5.2.

Таблица 5.2 Потери электрической энергии в линии 10КВ.

Номер участка Длина участка ?уч, км Расчетная мощность Рр. КВТ Коэффициент мощности cos? Максимальная полная мощность Sуч, КВА Марка и сечение проводов Активное сопротивление проводов ro, Ом/км Время использования максимальной нагрузки Тмах, ч Время потерь ?, ч Потеря энергии на участке ?Wв, КВТ·ч

7-8 3,3 100 0,91 84,34 АС-35 0.773 2500 1500 462,0637604

7-9 1,7 200 0,91 192,77 АС-50 0.592 3200 1800 875,0247555

6-7 3 479,5 0,919091 384,83 АС-35 0.773 3400 2000 12623,82677

6-10 3,3 75 0,73 273,97 АС-35 0.592 2500 1500 309,316945

1-6 2,3 610 0,868532 620,45 АС-35 0.42 3400 2000 9530,052681

3-5 2,4 86,19 0,84 64,01 АС-35 0.773 2500 1500 292,9794666

3-4 3,2 150 0,91 144,58 АС-35 0.592 3200 1800 926,4967999

2-3 4 282 0,897022 231,29 АС-35 0.42 3400 2000 3320,712855

1-2 4,4 341,5 0,860111 390,48 АС-35 0.42 3400 2000 5826,454084

ИП-1 4,6 940 0,870798 964,04 АС-50 0.42 3400 2000 45025,41955

Определим потери электрической энергии до нашего расчетного пункта т.е.: DW0-5= DWИП-1 DW1-2 DW2-3 DW3-5 = 45025 5826 3320 292,97=54464 КВТ ч

5.3 Определение годовых потерь электрической энергии в трансформаторе

Потери энергии за год ?W в трансформаторе складываются из потерь в обмотках трансформатора (?РОБ) и потери в стали (РХ.Х). Потери в обмотках при номинальной нагрузке принимаются равными потерям короткого замыкания (РК), тогда (5.2) где DPM.н - потери в обмотках трансформатора при номинальном токе нагрузки, КВТ;

Smax - максимальная полная нагрузка трансформатора, КВА;

t - время максимальных потерь трансформатора, ч;

DPX.х. - потери холостого хода трансформатора, КВТ;

8760 - число часов в году.

5.4 Определение общих потерь

Общие потери определяются по следующей формуле: (5.3) где DWTP - потери в трансформаторе, КВТ.ч;

SDW - суммарные потери, КВТ.ч;

Получаем:

6. Конструктивное выполнение линий 10 И 0,38 КВ, трансформаторных подстанций 10/0,4 КВ

Воздушные линии 10 КВ выполняются проводами марки «АС». Их крепят на железобетонных одностоечных, свободно стоящих, а анкерные и угловые с подкосами. Провода крепим к изоляторам типа ШФ - 10Г.

Низковольтные линии для питания сельских потребителей выполняют на напряжение 380/220 В с глухозаземленной нейтралью. Магистральные линии для питания потребителей выполняют пятипроводными: три фазных провода, один нулевой и один фонарный.

Опоры ВЛ поддерживают провода на необходимом расстоянии от поверхности земли, проводов, других линий и т.п. Опоры должны быть достаточно механически прочными. На ВЛ применяются железобетонные, деревянные опоры. Принимаем установку железобетонных опор высотой 10 м над поверхностью земли. Расстояние между проводами на опоре и в пролете при наибольшей стреле провеса (1,2 м) должно быть не менее 40 см.

Основное назначение изоляторов - изолировать провода от опор и других несущих конструкций. Материал изоляторов должен удовлетворять следующим требованиям: выдерживать значительные механические нагрузки, быть приспособленным к работе на открытом воздухе под действием температур, осадков, солнца и т.д.

Выбираем для ВЛ - 0,38 КВ изоляторы типа НС - 16. Провода крепим за головку изолятора, на поворотах к шейке изолятора.

Для электроснабжения населенных пунктов широко применяются закрытые трансформаторные подстанции (ЗТП) 10/0,38 КВ. Как правило, сельские ЗТП сооружаются в отдельно стоящих одно- или двухэтажных кирпичных или блочных зданиях. Вне зависимости от конструкции здания они разделяются на три отсека: отсек трансформатора, отсек РУ 10 КВ и отсек РУ 0,38 КВ. Распределительное устройство 10 КВ комплектуется из камер заводского изготовления КСО. Распределительное устройство 0,38 КВ может состоять из шкафов серии ЩО-70, ЩО-94 и др. шкафы ЩО-70-3 отличаются от шкафов ЩО-70-1 и ЩО-70-2 сеткой схем электрических соединений, габаритами, которые уменьшены по высоте на 200 мм.

ЩО-70-3 имеет следующие типы панелей: · панели линейные;

· панели вводные;

· панели секционные.

Подстанция имеет защиты: 1. от грозовых перенапряжений (10 и 0,38 КВ);

2.от многофазных (10 и 0,38) и однофазных (0,38) токов короткого замыкания;

3.защита от перегрузок линии и трансформатора;

4.блокировки.

7. Расчет токов короткого замыкания

Расчет токов короткого замыкания производится для решения следующих основных задач: выбор и оценка схемы электрических соединений;

выбор аппаратов и проверка проводников по условиям их работы при коротком замыкании;

проектировании защитных заземлений;

подбор характеристик разрядников для защиты от перенапряжений;

проектирование и настройка релейных защит.

1.Составляем расчетную схему

К1 К2 К3

АС35 АС50 4А50 4А35 4А25

~

11км 4км 0.108км 0.084км 0.164км

ST = 63 КВ·А; ?UК%=4.5%; ?PХХ=0.33КВТ;

?РК=1.970КВТ; ZT(1)=0.779 Ом.

Расчет ведем в относительных единицах.

2.Задаемся базисными значениями

SБ=100 МВА; UБВ=1,05UH=10,5 КВ; UБН=0,4 КВ.

3.Составляем схему замещения

К1 К2 К3

ХС ZT

Рис. 8.2. Схема замещения.

4.Определяем сопротивления элементов схемы замещения в относительных единицах: - системы:

Определяем сопротивление ВЛ-10КВ:

- трансформатора: Так как его величина очень мала;

- ВЛ 0,4 КВ:

5.Определяем результирующее сопротивление до точки К1

К1

Z*К1

6.Определяем базисный ток в точке К1

7.Определяем токи и мощность к.з. в точке К1.

где КУ-ударный коэффициент, при к.з. на шинах 10 КВ КУ=1.2.

8.Определяем результирующее сопротивление до точки К2: К2

Z*К2

9.Определяем базисный ток в точке К2:

10.Определяем токи и мощность к.з. в точке К2:

Ку=1при к.з. на шинах 0,4 КВ ТП 10/0,4 КВ.

11.Определяем результирующее сопротивление до точки К3:

К3

Z*К3

12.Определяем токи и мощность к.з. в точке К3:

Ку=1 для ВЛ - 0.38 КВ.

Однофазный ток к.з. определяем в именованных единицах:

где - фазное напряжение, КВ;

- полное сопротивление трансформатора при однофазном коротком замыкании на корпус трансформатора, Ом;

- сопротивление петли «фаза - ноль», Ом.

Результаты расчетов сводим в таблицу 8.1.

Таблица 8.1 Результаты расчета токов к.з.

№ п/п Место к.з. ІК(3), КА ІК(2), КА ІК(1), КА ІУК, КА SK(3), МВА

1 К1 0.5 0.44 - 0.85 9.09

2 К2 1.88 1.64 - 2.66 1.3

3 К3 0.57 0.5 0.279 0.8 0.39

8. Выбор аппаратов защиты

После выбора типа и мощности ТП, расчета токов короткого замыкания производим выбор оборудования ТП.

Для обеспечения надежной работы электрические аппараты должны быть выб

Список литературы
1) Янукович Г.И. Расчет электрических нагрузок в сетях сельскохозяйственного назначения. Мн.: БГАТУ, 2003

2) Будзко И.А., Зуль Н.М. «Электроснабжение сельского хозяйства» М.:Агропромиздат, 1990.

3) Янукович Г.И. Расчет линий электропередачи сельскохозяйственного назначения. Мн.:БГАТУ,2002

4) Поворотный В.Ф. Методические указания по расчету электрических нагрузок в сетях 0,38...110 КВ сельскохозяйственного назначения. Мн.: БИМСХ, 1984.

5) Нормы проектирования сетей, 1994.

6) Каганов И.Л. Курсовое и дипломное проектирование. М.: Агропромиздат, 1990.

7) ПУЭ

8) Янукович Г.И. Расчет линий электропередачи сельскохозяйственного назначения. Мн.:БГАТУ,2002.

9) Янукович Г.И., Поворотный В.Ф., Кожарнович Г.И. Электроснабжение сельскохозяйственных предприятий и населенных пунктов. Методические указания к курсовому проекту для студентов специальности С.03.02.00. Мн.: БАТУ, 1998.

10) Янукович Г.И. Расчет линий электропередач сельскохозяйственного назначения. Учебное пособие. Мн.: БГАТУ, 2004.

11) Елистратов П.С. Электрооборудование сельскохозяйственных предприятий. Справочник. Мн.: Ураджай, 1986.

12) Нормы проектирования сетей, 1994.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?