Электроснабжение механического цеха машиностроительного завода - Курсовая работа

бесплатно 0
4.5 120
Объединенная работа энергосистем позволяет уменьшить необходимую установленную мощность в основном за счет разновременности наступления максимумов электрической нагрузки объединения, включая и поясной сдвиг во времени, сокращения необходимых резервов.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Создание энергосистем и объединение их между собой на огромных территориях стало основным направлением развития электроэнергетики мира в 20 веке. Невозможно накопление больших количеств электроэнергии, а устойчивая работа электростанции и сетей обеспечивается в очень узком диапазоне основных параметров режима. В этих условиях надежное электроснабжение от отдельных электростанций требует резервирование каждой станции, как по мощности, так и по распределительной сети. Известно, что объединенная работа энергосистем позволяет уменьшить необходимую установленную мощность в основном за счет разновременности наступления максимумов электрической нагрузки объединения, включая и поясной сдвиг во времени, сокращения необходимых резервов мощности вследствие малой вероятности одновременной крупной аварии во всех объединяемых системах. Дополнительное электросетевое строительство, связанное с созданием энергообъединений, не требует больших затрат, так как при их формировании используются в основном линии электропередачи, необходимые для выдачи мощности электростанций, а затраты на них с лихвой окупаются удешевлением строительства крупной электростанции по сравнению с несколькими станциями меньшей мощности.Механический цех машиностроительного завода предназначен для серийного производства изделий. Для этой цели установлено основное оборудование: обдирочные, шлифовальные, анодно-механические станки и др. На стороне 10 КВ трансформатора установлена ячейка КСО-366, с выключателем нагрузки, трансформатором тока и трансформатором напряжения. Защита от токов короткого замыкания на стороне 0,4 КВ выполнена автоматическими выключателями серии ВА51Г-25. Распределительная сеть выполнена шинопроводом марки ШМА 73У3, двумя распределительными шинопроводами марки ШРА-4 и ШРА2, так же распределительным шкафом серии ПР85.Передача значительного количества реактивной мощности из энергосистемы к потребителям нерациональна по следующим причинам: возникают дополнительные потери активной мощности и энергии во всех элементах системы электроснабжения, обусловленные загрузкой их реактивной мощностью, и дополнительные потери напряжения в питательных сетях. При выборе средств компенсации реактивной мощности в системах электроснабжения промышленных предприятий необходимо различать по функциональным признакам две группы промышленных сетей в зависимости от состава их нагрузок: первая группа - сети общего назначения (сети с режимом прямой последовательности основной частоты 50 Гц.); вторая группа - сети со специфическими нелинейными, несимметричными и резко переменными нагрузками. К сетям напряжением до 1000 В. на промышленных предприятиях подключается большая часть потребителей реактивной мощности. Сети напряжением 380-660 В электрически более удалены от источников питания, поэтому передача реактивной мощности в сети низкого напряжения требует увеличения сечений проводов и кабелей, повышения мощности силовых трансформаторов и сопровождается потерями активной и реактивной мощностей. При решении задачи компенсации реактивной мощности требуется установить оптимальное соотношение между источниками реактивной мощности низкого напряжения и высокого напряжения, принимая во внимание потери электрической энергии на генерацию реактивной мощности источниками низкого напряжения и высокого напряжения, потери электрической энергии на передачу QMAX.T из сети высшего напряжения в сеть низшего напряжения и удержание трансформаторной подстанции в случае загрузки их реактивной мощностью.

Список литературы
(2. 29)

Кабельные линии:

(2. 30)

Трансформатор:

(2. 31)

Определяем токи короткого замыкания в заданных точках:

(2. 31)

(2. 32)

(2. 33)

(2. 34)

(2. 35)

(2. 36)

Определяем ударные токи в заданных точках:

(2. 37)

(2. 38)

Определяем мощность короткого замыкания в заданных точках:

(2. 39)

(2. 40)

2.6 Расчет и выбор распределительной сети 0,38 КВ.

2.6.1 Расчет и выбор защитной аппаратуры.

Выбираем выключатель к распределительному шинопроводу ШРА-1.

(2. 41)

(2. 42)

(2. 43)

п = 10

Выбираем выключатель ВА 51-39.

Выбираем выключатель к распределительному шинопроводу ШРА-2.

п = 10

Выбираем выключатель ВА51-39

Выбираем выключатель к распределительному щиту.

п = 10

Выбираем выключатель ВА 51 -39

Выбираем выключатель к распределительному шинопроводу ШРА-2.

п = 2

Выбираем выключатель ВА53-41

Выбираем выключатель к шлифовальным станкам.

п = 7

Выбираем выключатель ВА51Г-25

Выбираем выключатель к обдирочным станкам типа РТ-341.

п = 7

Выбираем выключатель ВА51Г-25

Выбираем выключатель к мостовому крану.

п = 7

Выбираем выключатель ВА51Г-25

Выбираем выключатель к обдирочным станкам типа РТ-250.

п = 7

Выбираем выключатель ВА51Г-25

Выбираем выключатель к анодно-механическим станкам типа МЭ-31.

п = 7

Выбираем выключатель ВА51Г-25

Выбираем выключатель к анодно-механическим станкам типа МЭ-12

п = 7

Выбираем выключатель ВА51Г-25

Выбираем выключатель к вытяжному вентилятору.

п = 7

Выбираем выключатель ВА51Г-25

Выбираем выключатель к анодно-механическим станкам типа МЭ-31.

п = 7

Выбираем выключатель ВА51Г-25

2.6.2 Расчет и выбор проводов и кабелей.

Выбираем кабель к распределительному щиту.

(2. 36)

(2. 37)

Выбираем четырехжильный кабель с алюминиевыми жилами АПВГ-70.

Выбираем провода к шлифовальным станкам.

Выбираем провод АПРТО сечением 35 мм2.

Выбираем провода к обдирочным станкам типа РТ-341.

Выбираем провод АПРТО сечением 16 мм2.

Выбираем провода к мостовому крану.

Выбираем провод АПРТО сечением 16мм2.

Выбираем провода к обдирочным станкам типа РТ-250.

Выбираем провод АПРТО сечением 10 мм2.

Выбираем провода к анодно-механическим станкам типа МЭ-31.

Выбираем провод АПРТО сечением 6 мм2.

Выбираем провода к анодно-механическим МЭ-12.

Выбираем провод АПРТО сечением 2,5 мм2.

Выбираем провод к приточному вентилятору.

Выбираем провод АПРТО сечением 10 мм2.

Выбираем провод к вытяжному вентилятору.

Выбираем провод АПРТО сечением 6 мм2.

2.6.3 Расчет и выбор распределительных шинопроводов.

Выбираем шинопровод ШРА1.

Рассчитываем среднесменную активную мощность по формуле 2.3

Определяем средний коэффициент использования по формуле 2.5

Определяем эффективное количество потребителей значит nэ=2.

Определяем коэффициент максимума. kmax=3,11. [1., с. 55, таб. 2.15]

Определяем максимальную активную мощность по формуле 2.7.

Определяем среднесменную реактивную мощность по формуле 2.8. т. к. пэ<10, то Определяем полную максимальную мощность по формуле 2.9.

Определяем максимальный ток.

(2. 38)

Выбираем шинопровод марки ШРА-4.

Выбираем шинопровод ШРА-2.

Рассчитываем среднесменную активную мощность по формуле 2.3.

Определяем средний коэффициент использования по формуле 2.5.

Определяем эффективное количество потребителей

Определяем коэффициент максимума. кмах = 3,11 [1., с. 55, таб. 2.15]

Определяем максимальную активную мощность по формуле 2.7.

Определяем среднесменную реактивную мощность по формуле 2.8. т.к. пэ <10, то Определяем полную максимальную мощность по формуле 2.9.

Определяем максимальный ток по формуле 2.38.

Выбираем шинопровод марки ШРА-4.

Выбираем распределительный щит РШ.

Рассчитываем среднесменную активную мощность по формуле 2.3.

Определяем средний коэффициент использования по формуле 2.5. т. к. т<3, а ки.ср.<0,2, то пэ определяется по формуле

Определяем коэффициент максимума кмах = 3,11. [1., с. 55, таб. 2.15]

Определяем среднесменную реактивную мощность по формуле 2.6.

Определяем максимальную активную мощность по формуле 2.7. т.к. пэ < 10, то Определяем полную максимальную мощность по формуле 2.8.

Определяем максимальный ток по формуле 2.38

Выбираем распределительный шкаф ПР 85.

Ток магистральный шинопровод выбирается по сумме максимальных токов распределительных шинопроводов.

Выбираем шинопровод марки ШМА 73У3.

2.7 Расчет и выбор питающего кабеля

Силовые кабели выбираются по конструктивному выполнению, по напряжению и по экономической плотности тока, проверяют на максимальный ток нагрузки, на потерю напряжения при номинальном и аварийном режиме и на термическую устойчивость при коротком замыкании.

Рассчитываем длительный ток:

(2. 39)

Рассчитываем экономически выгодное сечение:

(2. 40) где jэк - максимальная плотность тока А/мм2 для алюминиевых кабелей с бумажной изоляцией. Полученное сечение округляем до ближайшего стандартного по условию: Sрасч >Sэк, выбираем Sэк ст=25 мм2, марка кабеля ААБ-25.

Выбранное сечение кабеля проверяется.

1. На допустимую потерю напряжения. При этом ориентировочно можно считать, что в данном курсовом проекте считаются допустимыми следующие потери: линии напряжением 6-10 КВ внутри предприятия - 5%. Необходимо учесть, что в кабельных линиях при любом сечении жил кабеля - активное сопротивление больше реактивного и последним можно пренебречь. Тогда выражение упрощается:

(2. 41) значение R=1,24

(2. 42)

, (2. 43) где cos? - значение после компенсации; l - 0,018х3 = 0,054 м.

Получено значение соответствует норме.

2. На нагрев токами нормального режима: , (2. 44) где t0 - начальная температура прокладки кабеля. тдоп - допустимая температура нагрева для данного вида кабеля.

(2. 45)

ІДОП - длительно допустимый ток для данного вида кабелей.

Выбранное сечение кабеля удовлетворяет условию термической стойкости на длительный ток. Выбираем кабель марки ААБ сечением 25 мм2.

2.8. Расчет и выбор высоковольтного оборудования

Выбираем трансформатор тока.

Таблица 2.3 Выбор трансформатора тока.

Табличные данные Расчетные данные

Трансформатор тока с номинальным током 50 А не проходит по условию, т.к. ударный ток значительно превышает допустимый. Поэтому предполагаем к установке трансформатор тока с номинальным током 100 А. Данный трансформатор тока удовлетворяет условию по ударной стойкости.

Выбираем трансформатор тока типа ТПЛК-10.

Выбираем трансформатор напряжения.

Выясним, какую мощность потребляют катушки напряжения счетчиков активной и реактивной энергии.

Счетчик активных ватт часов: Счетчик реактивный: Если к трансформатору напряжения подключаются счетчики, класс точности 0,5. S предполагаемого трансформатора 75 ВХА, класс точности 0,5.

Выбираем трансформатор напряжения типа НОМ-10-66 ТЗ.

На высокой стороне ставим ячейку КСО-366

Табличные данные Расчетные данные

Устанавливаем выключатель нагрузки ВНМ-10 с приводом пружинным серии ПП-16. Выключатель допускает автоматическое отключение при перегорании одного из предохранителей.

Принцип действия выключателя основан на гашении электрической дуги, возникающей при размыкании дугогасительных контактов, потоком газа, образующегося в результате воздействия высокой температуры дуги на твердое газогенерирующее вещество.

Выбор шин.

Определяем номинальный ток.

(2. 46)

Выбираем шины: 15х3 мм., ІДОП = 165 А.

Релейная защита

На цеховых подстанциях обычно устанавливают силовые трансформаторы мощностью до 1000 КВ*А. На них устанавливают максимально-токовую защиту, защиту от однофазных замыканий на землю на стороне низшего напряжения; газовую защиту - для трансформаторов внутрицеховых подстанций мощностью от 400 КВ*А и выше.

Указанные защиты применяют в зависимости от типа аппаратов, установленных на стороне высшего напряжения: высоковольтный выключатель, выключатель нагрузки или предохранители. Применение последних значительно удешевляет установку и упрощает защиту.

Защиту предохранителями и выключателями нагрузки выполняют для трансформаторов мощностью до 1000 КВ*А напряжением до 10 КВ с предохранителями ПК на 100 А и мощностью не более 2500 КВ*А напряжением 35 КВ с предохранителями ПК-35Н на 40 А; отключаемая мощность короткого замыкания не должна превышать 200 МВ*А.

Высоковольтные предохранители типа ПК при установке на них соответствующих плавких вставок обеспечивают защиту трансформатора от внутренних повреждений и междуфазных коротких замыканиях на выводах.

Защиту от однофазных замыканий на землю осуществляют автоматическим выключателем с максимальным расцепителем, установленным на стороне низшего напряжения, или трансформатором тока ТТ на нулевом проводе при прямом присоединении трансформатора с глухозаземленной нейтралью к шинопроводу.

2.10 Выбор защитного заземления

Заземление какой-либо части электроустановки - преднамеренное соединение ее с заземляющим устройством с целью сохранения в ней низкого потенциала и обеспечение нормальной работы системы или ее элементов в выбранном режиме. Различают три вида заземлений: рабочее, защитное и заземление молниезащиты.

Рабочее заземление сети - соединение с землей некоторых точек сети со следующей целью: снижение уровня изоляции элементов электроустановки, эффективная защита сети разрядниками от атмосферных перенапряжений, снижение коммутационных перенапряжений, упрощение релейной защиты от однофазных коротких замыканий, возможность удержания поврежденной линии в работе.

Те или другие перечисленные свойства сети приобретают в зависимости от способа ее заземления, в соответствии, с чем различают: 1. Незаземленные сети, в которых с землей соединяются только нейтрали первичных обмотках измерительных трансформаторов напряжения, сопротивление которых очень велико;

2. Заземление через дугогасящие реакторы, или компенсированные сети;

3. Эффективно заземленные сети.

Изоляция оборудования в эффективно заземленных сетях выбирается по фазному напряжению.

Рабочее заземление осуществляется непосредственно или через специальные аппараты: пробивные предохранители, разрядники и резисторы.

Электроустановки переменного тока напряжением до 1000 В. допускаются к применению как с глухозаземленной, так и с изолированной нейтралью, а - тока - с глухозаземленной или изолированной средней точкой. В четырехпроводных сетях трехфазного тока и трехпроводных сетях - тока обязательное глухое заземление нейтрали или средней точки.

В электрических установках напряжением 110 КВ и выше нейтрали заземляются наглухо, а нейтрали напряжением - 3, 6, 10, 20, 35 КВ не заземляются или заземляются через конденсаторные установки.

При заземлении электрических установок особое внимание необходимо обращать на заземление металлических корпусов передвижных и переносных электроприемников, передвижных установок и механизмов.

В электрических установках напряжением до 1000 В, с изолированной от земли нейтралью, используемой для заземления электрического оборудования, сопротивление заземляющего устройства не должно быть более 4 Ома.

В электрических установках напряжением до 1000 В. с глухозаземленной нейтралью сопротивление заземляющего устройства, к которым присоединяются нейтрали генераторов или трансформаторов, должно быть не более 2, 4, 8 Ом.

Отклонение электрических установок при однофазных замыканиях на землю может осуществляться при помощи защитного отключения, которое выполняется в дополнение к заземлению или занулению.

Если невозможно выполнить заземление, или зануление, и обеспечить защитное отключение электрической установки, то допускается обслуживание электрического оборудования с изолирующих площадок. При этом должна быть исключена возможность одновременного прикосновения к незаземленным частям электрического оборудования и частям зданий или оборудованию имеющем соединение с землей.

В данном курсовом проекте внешний контур защитного заземления выполнен электродами, в количестве 9 штук. Электроды соединены между собой в общий контур полосовой стальной шиной по периметру. Соединение внутреннего контура с внешним контуром выполняется полосовой сталью на сварке, выход полосы через стену в асбестоцементной трубе. Заземление электрических приемников выполняется гибким проводником на сварке.

Выбираем прутковые электроды.

Рассчитываем удельное сопротивление грунта.

(2. 47)

Выбираем грунт - глина, Выбираем коэффициент повышенного удельного сопротивления

Определяем сопротивление одиночного заземлителя:

(2. 48)

Определяем сопротивление заземляющего устройства при условии, что оно является общим для напряжения 6 и 0,4 КВ.

(2. 49)

Берем по ПУЭ для напряжения 0,38 КВ.

Определяем количество электродов:

(2. 50)

2.11 Учет и контроль электроэнергии

Расчетным учетом электроэнергии называется учет выработанной, а также отпущенной потребителям электроэнергии для денежного расчета за нее. Счетчики, устанавливаемые для расчетного учета, называются расчетными счетчиками (класса 2), с классом точности измерительных трансформаторов - 0,5.

Техническим (контрольным) учетом электроэнергии называется учет для контроля расхода электроэнергии электростанций, подстанций, предприятий, зданий, квартир и т.п. Счетчики, устанавливаемые для технического учета, называются контрольными счетчиками (класса 2,5) с классом точности измерительных трансформаторов - 1.

При определении активной энергии необходимо учитывать энергию: выработанную генераторами электростанций; потребленную на собственные нужды электростанций и подстанций; выданную электростанциями в распределительные сети; переданную в другие энергосистемы или полученную от них; отпущенную потребителям и подлежащую оплате.

Кроме того, необходимо контролировать соблюдение потребителями заданных им режимов потребления и баланса электроэнергии, установления удельных норм расхода электроэнергии и проведения хозрасчета.

Расчетные счетчики активной электроэнергии на подстанции энергосистемы должны устанавливаться: 1) для каждой отходящей линии электропередачи, принадлежащей потребителям;

2) для межсистемных линий электропередачи - по два счетчика со стопорами, учитывающих полученную и отпущенную электроэнергии;

3) на трансформаторах собственных нужд;

4) для линий хозяйственных нужд или посторонних потребителей (поселок и т.п.), присоединенных к шинам собственных нужд.

Расчетные счетчики активной электроэнергии на подстанциях потребителей должны устанавливаться: 1) на вводе (приемном конце) линии электропередачи в подстанцию: 2) на стороне высокого напряжения трансформаторов при наличии электрической связи с другой подстанцией энергосистемы;

3) на границе раздела основного потребителя и субабонента.

Контрольные счетчики технического учета. Эти счетчики включают в сеть низшего напряжения (до 1000 В), что имеет ряд преимуществ: установка счетчика обходится дешевле (чем на стороне высшего напряжения);

появляется возможность определить потери в трансформаторах и в сети высшего напряжения;

монтаж и эксплуатация счетчиков значительно проще.

Требования, предъявляемые к контрольным счетчикам в отношении класса точности, значительно ниже, чем требования, предъявляемые к расчетным счетчикам, поскольку по контрольным счетчикам не производят денежных расчетов. Поэтому контрольные счетчики могут подключаться к измерительным трансформаторам тока класса точности 1.

Допускается установка контрольных счетчиков технического учета на вводе предприятия, если расчетный учет с ним ведется по счетчикам, установленным на подстанциях энергосистем.

Для измерения активной энергии в трехфазных сетях при неравномерной нагрузке применяют двух- и трех системные счетчики. В трехфазных сетях с нулевым проводом сумма токов отдельны фаз не равна нулю и поэтому двухсистемные счетчики непригодны.

В четырехпроводных сетях при неравномерной нагрузке применяют трехсистемные счетчики или двухсистемные счетчики с тремя токовыми катушками.

Рисунок 5. Схема включения трехфазного счетчика типов СА4, САЧУ для измерения активной электроэнергии в четырехпроводной сети напряжением до 1000 В.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?