Навигационно-информационная компьютерная система ECDIS - отображение картографической и навигационно-гидрографической информации, необходимой для безопасного судовождения. Используется как эквивалент бумажных навигационных карт и пособий для плавания.
Приводятся основные понятия об электронных картах и навигационно-информационных компьютерных системах (ECD1S, ECS) в которых прокладка выполняется на электронных картах. Рассмотрены техническое, информационное, лингвистическое обеспечения навигационных систем с электронными картами, охарактеризованы их функциональные возможности, освещены требования ИМО к ECD1S. Особое внимание уделено ограничениям и недостаткам ECD1S. Предназначена для учащихся судоводительской специальности морских академий, может быть полезной для судоводителей морских транспортных, рыбопромысловых и научно-исследовательских судов. Книга одобрена научно-методической комиссией по судовождению Министерства образования и науки Украины.
Введение
В судовождении все более широкое распространение получают высокоэффективные навигационно-информационные компьютерные системы с электронными картами (ЭК). Среди них выделяют в настоящее время два вида систем: ECDIS (Electronic Chart Display and Information System); ECS (Electronic Chart System).
ECDIS - это навигационно-информационная компьютерная система (НИКС), удовлетворяющая специальным требованиям, что позволяет судоводителям официально использовать ее прокладку на электронной карте вместо прокладки на бумажных картах. Такой статус ECD1S определен правилом V/20 международной конвенции ИМО по безопасности жизни на море (SOLAS-74). Согласно этому правилу, все суда должны быть снабжены приведенными на уровень современности картами, наставлениями для плавания, пособиями до огням, знакам, радиотехническим средствам, извещениями мореплавателям, таблицами приливов и другими специальными публикациями, необходимыми на предстоящий рейс. Требуемые карты могут быть обеспечены также путем их представления на экране ECD1S. Это касается и других необходимых на рейс навигационных пособий, информация которых также может быть отображена на экране ECD1S.
Таким образом, ECDIS может быть использована как эквивалент бумажных навигационных карт и пособий для плавания. Это означает не физическую эквивалентность прокладок на электронной и бумажной картах, а юридическое признание использования ECD1S без применения бумажных карт на район плавания.
Эксплуатационные требования к ECDIS, требования к ее аппаратуре и программному обеспечению определены международными организациями: ИМО - международной морской организацией (IMO -International Maritime Organization), МГО - международной гидрографической организацией (ШО - International Hydrographic Organization), МЭК - международной электротехнической комиссией (IEC - International Electrotechnical Comission).
ECS представляет собой навигационную или навигационно-информациоиную компьютерную систему с электронными картами, не удовлетворяющую в полной мере требованиям к ECD1S, ECS не может быть использована без применения официальных бумажных карт.
В ECDIS реализуются последние достижения в области информационной техники и они обладают обширными возможностями.
Корректура электронных карт в ECDIS может осуществляться автоматически через спутниковые каналы связи и, в частности, через всемирную компьютерную сеть Интернет. Через эту сеть можно заказывать и получать также новые электронные карты и другую навигационную информацию.
В результате применения ECDIS судоводитель на ходовой вахте освобождается от выполнения многих рутинных операций. Его основными функциями становится наблюдение за окружающей обстановкой, контроль ECDIS и других средств судовождения, управление их работой для получения требуемой обстановкой информации, оценка предоставляемой информации и принятие решений по управлению судном. ECDIS способна предоставлять судоводителю в интегрированном виде информацию, характеризующую различные стороны процесса судовождения, что позволяет ему уверенно и обоснованно принимать решения. Применение ECDIS повышает результативность деятельности судоводителя, обеспечивает использование большего объема и номенклатуры данных, увеличивает скорость их обработки, улучшает точность и достоверность результатов, повышает безопасность мореплавания и приводит к росту финансовых показателей работы судна.
Однако не надо забывать и об определенной сложности работы с такими системами, как ECDIS. Эта сложность определяется большим набором решаемых ECDIS задач, требующих многочисленных исходных данных; значительным числом ее управляющих функций; вырабатываемыми ей различного вида сигналами, предупреждениями и сообщениями; одновременной работой со многими навигационными приборами и средствами управления; способностью параллельного решения сразу нескольких задач; концентрированным представлением информации о процессе судовождения и необходимостью правильной ее оценки, и т.д., а также имеемыми погрешностями, ограничениями и недостатками, которые надо постоянно иметь ввиду. Все это требует более высокого интеллектуального уровня подготовки судоводителей. Для работы с ECDIS судоводители должны: • Знать базовые принципы построения навигационно-информационных компьютерных систем и организацию их данных, функциональные возможности НИКС, принципы решения системных и прикладных задач, способы управления данными, виды ввода, отображения и регистрации информации, типы вырабатываемых системами сигналов, сообщений и предупреждений, и что особенно важно - присущие этим системам ограничения, недостатки и потенциальные опасности использования;
• Уметь работать с ECDIS оборудованием, использовать навигационные и информационные функции, выбирать требуемую обстановкой информацию и объективно оценивать ее, принимать правильные решения на основе получаемой от ECDIS информации;
• Оценивать потенциальные погрешности отображаемых данных, вероятность неправильной их интерпретации и четко представлять опасность переоценки возможностей ECDIS.
1. Электронные карты
В общем плане под электронной картой - ЭК (electronic chart -ЕС) - понимается изображение определенного района Земли в условном виде на экране дисплея или набор данных для построения этого изображения.
1.1. Классификация электронных карт
При рассмотрении вопросов использования ЭК применяется их классификация по различным признакам.
В зависимости от полноты информации, представляемой на карте, ЭК разделяют на полномерные и упрощенные (стилизованные). По нагрузке полномерные навигационные ЭК равноценны официальным бумажным навигационным картам и содержат всю картографическую информацию, необходимую для безопасного и эффективного судовождения.
Нагрузка упрощенных электронных карт недостаточна для целей безопасного плавания. Для использования полномерных карт требуются обладающие широкими возможностями средства хранения и отображения информации, которыми ряд автоматизированных навигационных систем не обладает. В таких системах могут использоваться ЭК в упрощенном виде, который позволяет реализовывать имеемая аппаратура. Схематическое изображение на экране дисплея местности в определенной проекции, не эквивалентное бумажной навигационной карте и не удовлетворяющее требованиям к безопасности мореплавания, обычно называется упрощенной (стилизованной) электронной картой.
Упрощенные ЭК получаются самыми разными способами. Для ввода с бумажных карт в память ЭВМ данных для стилизованных карт в ряде автоматизированных навигационных систем используются специальные кодирующие планшеты - дигитайзеры (chart digitizer).
В зависимости от метода цифрового представления информации карты ЭК делят на растровые и векторные.
В растровых картах (Rastr electronic navigational chart - RNC) используется метод цифрового представления изображения карты в виде матрицы точек (пикселей). При таком представлении карты сведений об отдельных картографических объектах в памяти нет. Исходной для получения данных растровых карт служит информация официальных бумажных карт. Растровые карты получаются сканированием основы и раздельно цветного изображения бумажных карт. За основу растровых ЭК приняты печатные платы для обычных бумажных карт. Снятая с основы карта является копией бумажной. Сканерная технология производства растровых карт обеспечила в начале 90-х годов быстрое производство мировой коллекции этих карт.
В векторных ЭК (Vector electronic navigational chart -VENC) применяется метод цифрового представления элементов карты с помощью точек, линий, контуров, заданных своими координатами и соответствующим кодом. При таком методе представления информация карты хранится в памяти в виде последовательности записей, характеризующих каждый имеемый на карте картографический объект. Картографическим объектом (КО) называется реальный объект или явление, изображаемое на карте в условном виде; или описание или группа описаний картографических характеристик реального объекта или явления в цифровом виде для отображения его на ЭК.
Все объекты векторной электронной карты обычно распределяются по определенным тематическим уровням, называемых слоями карты. Такими слоями, например, могут быть: навигационные средства, глубины, качество данных, характеристики и т.д. Разделение нагрузки карты на слои позволяет системе, отображающей ЭК, управлять видимостью этих слоев.
Количество информационных слоев векторной ЭК может быть различным. Требуется их иметь, по крайней мере, три: базовая информация, дополнение базовой информации до стандартной, вся другая информация. Выделение таких слоев позволяет определить три вида нагрузки карты: базовую, стандартную и полную.
Базовая нагрузка - означает уровень информации карты, который не может быть удален с дисплея. Она содержит информацию, которая требуется всегда, во всех географических районах и при любых обстоятельствах. Это не означает, что ее достаточно для безопасного судовождения. Базовая нагрузка включает: береговую черту (для полной воды); выбранную капитаном для собственного судна безопасную изобату; в ограниченной безопасной изобатой области отдельные подводные опасности с глубинами, меньшими безопасной; в пределах этой же области отдельные опасности, такие как мосты, линии электропередачи, включая буи и знаки, которые используются или не используются как средства навигации; системы движения; масштаб; вид ориентации карты и режим дисплея; единицы глубин и высот.
Стандартная нагрузка - это минимальный набор данных, обеспечивающих безопасность при прокладке и планировании пути. Стандартная нагрузка включает базовую, а также линии осыхания, стационарные и плавучие средства навигации, границы фарватеров, каналов, приметные визуальные и радиолокационные объекты, запретные и ограниченные районы, и некоторые другие сведения.
Полная нагрузка состоит из стандартной и всей другой информации. Вся другая информация включает: значения глубин, подводные кабели и трубопроводы, маршруты паромов, детали всех отдельных опасностей, детали навигационных средств, содержание предупреждений мореплавателям, дату издания ЭК, горизонтальный геодезический датум, ноль глубин, магнитное склонение, географические названия и т.д.
Изображение векторной карты получается путем преобразования цифровых данных картографических объектов в графическое изображение карты. Построение элементов карты производится с помощью точек, прямых линий (векторов), ломаных линий и контуров по координатам точек, представляющих метрику картографических объектов.
Векторные ЭК до недавнего времени создавались в основном путем съема их цифровых данных с бумажных карт с помощью дигитайзерных технологий. В этих технологиях значительное место занимает ручной труд, что приводило к существенным затратам времени на производство векторных карт. В результате долгое время не было полной коллекции векторных карт на весь Мировой океан. В настоящее время для производства векторных карт созданы современные автоматические сканерные технологии, выполняющие «векторизацию» бумажной карты в требуемом формате и контроль качества получаемых данных. В результате скорость создания векторных электронных карт значительно увеличилась.
Кроме официальных бумажных карт, исходной информацией для образования данных векторных ЭК могут служить непосредственно данные геодезической съемки местности, а также результаты аэро и космической фотометрической съемки районов Земли. Это имеет большое значение по следующим причинам: • Обеспечивается более высокая точность данных карты, так как исходные данные свободны от погрешностей графического их представления на бумажной карте.
• Электронные карты могут создаваться по результатам новых высокоточных съемок местности, не ожидая, когда будут получены по этим результатам бумажные карты.
Дело в том, что съемка многих районов Земли выполнена давно и ее точность не отвечает современным требованиям. Это обстоятельство снижает эффективность спутниковых навигационных систем GPS и ГЛОНАСС и, соответственно, систем с ЭК. Поэтому в настоящее время производятся обширные работы по уточнению положения картографических объектов в системе WGS84 для многих районов Земли. Эта работа рассчитана на несколько лет. Получаемые при выполнении этой работы результаты могут непосредственно использоваться для создания новых высокоточных ЭК.
В зависимости от юридического статуса ЭК подразделяются на официальные и неофициальные карты. Официальными считаются ЭК, выпускаемые государственными гидрографическими организациями. Все другие ЭК относятся к неофициальным картам. Официальные векторные карты, например, создаются Главным управлением навигации и океанографии (ГУНИО) России. Официальные растровые электронные карты (RNC) производятся, например, специальной службой Британского Адмиралтейства (ARCS -Admiralty Raster Chart Strvice), гидрографической службой США (NOAA - National Oceanic and Atmospheric Administration).
В зависимости от вида навигационной системы, в которой ЭК представляются, электронные карты делятся на ecdis-карты и ecs-карты. Ecdis-карты - это официальные векторные электронные навигационные карты, данные которых стандартизованны по содержанию, структуре, действующему формату обмена картографической информацией и полностью удовлетворяют специальным требованиям ИМО и МГО. Они выпускаются для использования с ECDIS. Ecdis-карты в документах ИМО названы Electronic navigational charts - ENC. В основу использования ecdis-карт в судовождении положены следующие принципы: • точность и полнота ЭК должна быть не ниже бумажных навигационных карт;
• Данные карты и корректуры к ней должны быть представлены в официально принятых ШО стандартных форматах;
• Государственные гидрографические службы должны нести полную ответственность за содержание ЭК и корректур к ним;
• Данные карт и официальных корректур должны храниться в памяти системы в неизменяемом виде;
• размножение, регистрация и распространение ЭК должны соответствовать международным правилам распространения программного обеспечения.
К Ecs-картам относятся: растровые карты, упрощенные ЭК, выпускаемые частными фирмами полномерные векторные ЭК, векторные карты в отличном от действующего формате.
Классификация ЭК в зависимости от масштаба. Как известно, подробность нагрузки карт зависит от их масштаба. Масштаб электронной карты, которому соответствует ее нагрузка, называется оригинальным масштабом ЭК. В зависимости от оригинального масштаба ЭК делятся на: • карту мира (World) - 1:2500001 и меньше;
• генеральные карты (General) - 1:300001 - 1:2500000;
• прибрежные карты (Coastal) - 1:80001 - 1:300000;
• подходные карты (Approach)- 1:40001 - 1:80000;
• гавани (Harbour)-1:10001-1:40000;
• планы (Plan) -1:10000 и крупнее. Отметим, что традиционно бумажные отечественные навигационные морские карты в зависимости от масштаба подразделяются на следующие виды: • генеральные - 1:1000000 - 1:5000000;
• путевые - 1:100000 - 1:500000;
• частные - 1:25000 - 1:50000;
• планы - 1:25000 и крупнее.
Классификация ЭК в зависимости от использования в навигационной системе. Среди векторных карт различают основные и системные карты. Основной называют карту, данные которой размещены в отдельном файле, поставляемом государственной или частной организацией. Данные основной карты не могут быть изменены на судне.
Системная электронная карта (System electronic navigational chart - SENC) - это набор данных для отображения откорректированной навигационной карты, представленный во внутреннем формате системы. Он является результатом преобразования системой информации основной ЭК с учетом корректур и данных, добавленных мореплавателем. Это тот набор данных, который составляет дисплейный файл системы для отображения откорректированной навигационной карты и выполнения с ее помощью навигационных функций. SENC может содержать информацию и от дополнительных источников.
1.2 Геодезическая основа отсчета координат ЭК
В общем случае объект на карте характеризуется горизонтальными координатами (широта, долгота) и вертикальной координатой (высота или глубина). В основе отсчета горизонтальных координат лежит та или иная геодезическая система, называемая также горизонтальным геодезическим вотумом. Основой для отсчета вертикальных координат служит уровень моря, принимаемый за ноль глубин. Этот уровень называют вертикальным геодезическим датумом либо приливным уровнем.
Горизонтальный геодезический датум (исходная геодезическая дата) включает в себя геодезические координаты исходного пункта опорной геодезической сети, геодезический азимут направления на один из смежных пунктов, определенные астрономическим путем, и высоту геоида в этом пункте над поверхностью принятого референц-эллипсоида. Референц-эллипсоидом называют Земной эллипсоид определенных размеров, являющийся вспомогательной математической поверхностью, к которой относят результаты всех геодезических измерений на поверхности Земли, на которую проектируют все пункты опорной геодезической сети и к которой относят топографические и гидрографические съемки и составляемые по ним карты земной поверхности.
Система координат, полученная в результате уравнивания опорной геодезической сети на референц-эллипсоиде, и представляет собой ту или иную геодезическую систему координат либо горизонтальный геодезический датум. Исходными пунктами геодезических датумов часто являются определенные точки астрономических обсерваторий, геодезические координаты которых широту и долготу определяют путем астрономических наблюдений, освобожденных от влияния уклонения отвеса.
Различают локальные, региональные и всемирные геодезические системы координат. Локальные датумы являются геодезическими системами небольших участков земной поверхности. В качестве примера можно привести датум "Bissau Base North West and Pillar".
Региональные геодезические системы относятся к обширным районам Земли. В качестве примеров таких систем координат можно назвать: Советскую 1942 года (Pulkovo 1942), Европейский датум 1950 года (ED50), Британскую систему 1936 г. Токийский датум. Индийский датум. Новый североамериканский датум 1983 г, (NAD83- New North American Datum of 1983). Следует отметить, что если горизонтальный датум относится к территории государства, то он называется национальным.
Всемирный датум - это геодезическая система координат для всего земного шара. Примерами всемирных датумов являются американские системы WGS72, WGS84 и российская система П390 (SGS90 - Soviet Geocentric Coordinate System 1990).
Создание геодезических систем координат обширных районов земной поверхности зависит от возможностей технических средств, используемых при геодезической съемке. Когда эти средства были только оптическими, опорная геодезическая сеть могла включать только пункты, три из которых в любом месте находятся в зоне прямой видимости. Применение в геодезических работах радиотехнических систем высокой точности, таких как РСВТ, Decca, Hifix и др. дало возможность значительно увеличить расстояние между пунктами. Появление космической техники для точного определения положения на поверхности Земли привело к возможности создания всемирной геодезической системы.
Полученные до 1930 года горизонтальные геодезические датумы были локальными. С 1930 и до 1950 года в разных странах были проведены обширные геодезические работы по созданию региональных датумов. Начиная с пятидесятых годов, региональные геодезические системы стали не удовлетворять целям применения появившегося в те годы вооружения, которое требовало геодезическую систему отсчета мирового масштаба. Появление навигационной спутниковой системы «Транзит» позволило в I960 г. Министерству Обороны США создать путем объединения на основе спутниковых наблюдений различных региональных геодезических сетей Мировую геодезическую систему (Word Geodetic System of 1960 - WGS60). Эта система уточнялась в 1966, 1972, 1984 году. В настоящее время используется система координат WGS84, которая получила широкое распространение во всем мире. Она совпадает с NAD83. Большая а и малая b полуоси референц-эллипсоида WGS84 соответственно равны: а=6378137.00 м; б =6356752.31 м.
WGS84 принята за стандартную при расчетах положения определяющихся объектов в GPS. В WGS84 рекомендуется составлять официальные векторные ЭК. Расчеты кинематических параметров объектов в ГЛОНАСС ведутся в советской мировой геодезической системе П390.
Морские навигационные карты, основанные на съемках разных государственных гидрографических служб и организаций, имеют разные геодезические системы отсчета координат. Список полученных в разные годы датумов, которые использовались при составлении карт Земной поверхности, приведен в приложении 2. В приложении 3 перечислены геодезические системы навигационных карт, входящих в коллекцию Британского адмиралтейства.
Очень важно при судовождении знать, что координаты одного и того же объекта, отнесенные к разным геодезическим датумам, отличаются. Игнорирование этого обстоятельства может привести к аварии. Разность между положением объектов в разных геодезических системах может превышать несколько сот метров. Для современных геодезических систем она невелика. Разность между положением объектов в системах WGS84 и П390 не превышает 15 метров, а между положением в WGS84 и WGS72 - 17 м. Между тем разность между положением в системе WGS84 и в системе отсчета координат карты одного из районов в Эгейском море, основанной ,на съемке 1862 г, доходит до 2-5 миль. Из применяемых в настоящее время карт, съемка которых проводилась в далеком прошлом, большая часть относится к островам Юго-восточной Азии. Наибольшая зафиксированная разность между положением в WGS84 и положением на карте, основанной на старой съемке, составляет 7 миль.
Информация о горизонтальном датуме ЭК имеется для большинства навигационных карт. Однако для ряда карт, основанных на съемке, проведенной в далеком прошлом, горизонтальный датум неизвестен. На бумажных картах информация о горизонтальном датуме приводится в заголовке карты. Начиная с 1982 г., при переиздании карт многие гидрографические службы добавляют на картах поправки по широте и долготе для приведения к карте данных спутниковых определений в системе WGS. Запись об этом "Satellite-Derived Positions" обычно располагается около заголовка карты. Следует отметить, что многие приемоиндикаторы спутниковых систем определений места имеют возможность представлять данные в разных геодезических системах.
Учитывая, что спутниковая навигационная система GPS, которая работает в WGS84, стала основной в судовождении, гидрографические службы разных стран начали работу по приведению выпускаемых ими карт к этому датуму. Однако, изза отсутствия современной съемки ряда районов Земли некоторые карты не могут быть представлены в системе WGS84. В этом случае для карты приводится информация о невозможности приведения ее к WGS84: "Adjustments to WGS cannot be determined for this chart" или "The diiferences between satellite-derived positions and positions on this chart cannot be determined", и что поправки могут быть значительными - "Differences may be significant to navigation".
Вертикальные датумы морских навигационных карт также отличаются. Уровень, принимаемый при составлении карт за ноль глубин в разных странах, установлен их властями и не является единообразным. Сведения о принятом для карты нуле глубин приведены для большинства навигационных карт. Только на картах, составленных по результатам съемок, выполненных в далеком прошлом, особенно в районах, где приливные колебания невелики, уровень, принятый за ноль глубин, может быть неизвестен.
1.3 Разграфка электронных карт
Разделение земной поверхности на отдельные карты называется разграфкой или нарезкой. Для ЭК используют два вида разграфки: разграфку гидрографических служб, применяемую для нарезки бумажных карт; и равномерную разграфку, предложенную IHO.
Характерной чертой разграфки гидрографических служб является перекрывание соседними картами определенной акватории на их стыке и зависимость шага разграфки от широты, что обеспечивает приблизительное выравнивание площадей поверхности карт на разных широтах. Это в определенной степени способствует в случае равномерного распределения картографической нагрузки выравниванию информационных объемов карт. Когда для ЭК используется разграфка гидрографических служб, то обычно нумерация ЭК соответствует нумерации соответствующих бумажных морских навигационных карт.
В равномерной разграфке, предложенной IHO, в качестве разделяющих карты линий используются отрезки меридианов и параллелей с шагом, одинаковым по угловой величине для широты и долготы. Соседние карты при такой разграфке стыкуются между собой без перекрытия. Параметры разграфки приняты IHO для планов - 7.5"; карт гаваней - 15"; карт подходов - 30"; карт побережья - 1°; генеральных карт - 5°; карты мира - 10°. Карте каждого района по определенной системе присваивается номер (идентификатор), по которому однозначно определяется место этого района на карте мира.
Кроме названных, существуют разграфки, использованные частными фирмами при производстве векторных карт. В качестве примера можно указать равномерную разграфку норвежской фирмы «С-Мар», карты которой имеют размер 4х4°, стыкуются друг с другом без перекрытия и обеспечивают сплошное покрытие акваторий всего Мирового океана.
1.4 Проекции морских навигационных электронных карт
Морские навигационные ЭК в подавляющем большинстве случаев отображаются в проекции Меркатора. Меркаторская проекция - это равноугольная цилиндрическая проекция. Различают нормальную, поперечную и наклонную меркаторские проекции. Из них для представления навигационных ЭК в основном применяются две первые. С точки зрения судовождения главными достоинствами меркаторских проекций являются: возможность измерять натуральные, неискаженные углы, и зависимость частных масштабов только от положения точки, но не от направления измеряемой по небольшим частям искомой длины.
Нормальная проекция Меркатора (НПМ) используется для построения ЭК в диапазоне широт от 0 до 85°. Околополюсные районы в ней не могут быть отображены. Наибольшим достоинством НПМ для целей судовождения является представление локсодромии прямой линией.
НПМ получается проектированием земного эллипсоида на боковую поверхность цилиндра, касательного к эллипсоиду по линии экватора (рис. 1.1,а). Ось этого цилиндра совпадает с осью Земли. Затем боковая поверхность цилиндра разрезается по образующей и разворачивается на плоскость (рис. 1.1,6).
В нормальной меркаторской проекции меридианы являются прямыми параллельными линиями, перпендикулярными к экватору. На поверхности цилиндра проекции меридианов проходят через точки касания земных меридианов с цилиндром, перпендикулярно к плоскости экватора. Расстояние Х в НПМ между двумя меридианами с долготами , равно ; (1.1) где а - большая полуось земного эллипсоида.
Рис. 1.1. К пояснению нормальной проекции Меркатора.
Земные параллели в НПМ также прямые линии, перпендикулярные к меридианам. Ввиду того, что на земном эллипсоиде меридианы сходятся с приближением к полюсам, с ростом широты длина земной параллели между двумя меридианами становится меньше. Это уменьшение пропорционально уменьшению радиуса параллели r(j), который с учетом сжатия эллипсоида определяется формулой: (1.2) где е-эксцентриситет Земного эллипсоида.
В результате, масштаб проекции по параллели в НПМ увеличивается с ростом широты: (1.3)
Приближенно можно считать изменение пропорциональным секансу широты.
В равноугольной проекции в каждой точке масштаб по параллели равен частному масштабу по любому направлению, естественно, и масштабу по меридиану . В НПМ это достигается, когда расстояние от проекции экватора до проекции параллели с широтой ? на боковой поверхности цилиндра получается по формуле
; (1.4) где
. (1.5)
Следует заметить, что НПМ не является перспективной проекцией, так как элементы Земли не проектируются на боковую поверхность цилиндра с помощью лучей, исходящих из одной точки.
В НПМ расстояние Y по меридиану от экватора до параллели с широтой ?, выраженное в экваториальных милях, называется меридиональной частью (МЧ) этой параллели. Расстояние ?Y между двумя параллелями с широтами ?,?0, (ро называется разностью меридиональных частей (РМЧ). Ввиду увеличения масштаба с широтой величина РМЧ, соответствующая одинаковому значению разности широт, с ростом широты в НПМ увеличивается (рис. 1.1,б).
Для построения на экране дисплея карты в НПМ необходимо найти прямоугольные экранные координаты картографических объектов. Обозначим эти координаты х, у. Примем за их начало центр экранной области. Учитывая (1.1)-(1.5), можно найти следующие формулы для расчета значений х, у элементов ориентированной по норду карты: (1.6) где , - параллель и меридиан, проходящие через центр экрана дисплея;
Мо - масштаб по параллели (масштаб карты).
При ориентации карты "по курсу" прямоугольные экранные координаты картографических объектов рассчитываются по формулам
, где , - экранные координаты объекта при ориентации карты по курсу.
В навигационно-информационных компьютерных системах для расчета экранных координат х, у применяются и приближенные формулы, обеспечивающие погрешность вычислений, которая не превышает половины размера пиксела. В этом случае ЭК, построенные по результатам расчета положения элементов карты по точным и приближенным формулам, являются идентичными. В качестве упрощенных приближений к меркаторской проекции используются линейное и таблично-интерполяционное.
Линейное приближение к нормальной проекции Меркатора применяется при построении крупномасштабных карт. В его основе лежит представление о Земле как о шаре с радиусом R, при котором одна минута дуги меридиана равняется одной морской миле. НПМ при таком условии получается проектированием точек Земного шара на боковую поверхность цилиндра с помощью лучей (линий), исходящих из центра Земли. В этом случае при ориентации ЭК по норду расчет экранных координат элементов карты производится по известным приближенным формулам
. (1.7)
Таблично-интерполяционное приближение к проекции Меркатора используется при отображении мелкомасштабных карт, когда линейное приближение не обеспечивает требуемую точность. Сущность этого метода состоит в следующем. В картографической базе данных в таблице опорных точек НПМ помещаются табличные значения широт (порядка 300-500 на интервал 0-85°) и соответствующие им рассчитанные по строгим формулам значения и .
Значения экранных координат элементов карты рассчитываются по формулам (1.6), в которых значение , находится линейной интерполяцией между значениями , а значения , -интерполяцией между Uk. При линейной интерполяции значения , , соответствующие широте , получаются по формулам
, где
; .
Поперечная проекция Меркатора (ППМ) применяется для создания ЭК околополюсных районов Земли, в диапазоне широт от 80 до 90°. Земной эллипсоид в этом случае проектируется на поверхность цилиндра, касательного к эллипсоиду по меридиану. Ось такого цилиндра перпендикулярна оси Земли.
Рис. 1.2. Вид меридианов и параллелей в поперечной проекции Меркатора.
Если принять касательный к цилиндру земной меридиан за фиктивный экватор Земли, полюса этого экватора - за фиктивные полюса Земли, проходящие через фиктивные полюса большие круги - за фиктивные меридианы, а серию параллельных фиктивному экватору малых кругов на поверхности Земли - за фиктивные параллели, то свойства ППМ такой модели Земли будут аналогичны свойствам НПМ. Фиктивные меридианы и параллели на карте в ППМ будут взаимно перпендикулярными системами параллельных линий, а прямая линия будет фиктивной локсодромией, пересекающей фиктивные меридианы под одним углом.
Что касается действительных меридианов и параллелей, то на карте в ППМ они будут кривыми линиями (рис. 1.2), как и действительная локсодромия. На картах околополюсных районов в ППМ меридианы близки к радиально расходящимся от полюса прямым линиям, а параллели - к концентрическим окружностям.
Область минимальных искажений Земной поверхности на карте в ППМ лежит в узкой полосе, центральной линией которой является фиктивный экватор.
1.5 Формат для обмена картографической информацией
Для унификации использования данных векторных ЭК при выполнении с ними различных работ международными требованиями предусматривается представление их на носителях информации в специальных форматах. Формат - это спецификация последовательности и видов представления элементов информации (чисел, текста) на носителе.
Основным форматом для обмена официальной картографической информацией между Гидрографическими организациями, производителями ECDIS, мореплавателями в настоящее время является формат S57 (версия 3), разработанный Комитетом по обмену цифровыми данными ШО (Comitee of exchange of digital data - CEDD). Описание этого формата содержится в специальной публикацией МГО S-57: ЩО Transfer Standard for Digital Hydrographic Data, edition \Nov 1996 («Стандарт МГО для обмена цифровыми гидрографическими данными»).
Специальная публикация МГО S-57 состоит из двух частей: А и В. Часть А содержит каталог картографических объектов (Object Cataloge) - исчерпывающий список находящихся в обращении определенных классов картографических объектов, соответствующих им характеристик (атрибутов) и полный перечень значений атрибутов. Здесь под классом объектов подразумевается определенная группа объектов, которые считаются эквивалентными друг другу, например, плавучие маяки разных видов. В части В приведен формат S-57. Он описывает структуру данных и формат, который должен быть использован для обмена ENC-данными между Гидрографическими организациями, производителями ECDIS, мореплавателями и другими пользователями.
Следует подчеркнуть, что формат S-57 создан специально для обмена цифровой картографической информацией, а не для представления карт на экране дисплея компьютера. Ввиду определенных неудобств работы с этим форматом внутри ECDIS при выполнении ее операций, производители ECDIS свободны создавать свои внутрисистемные форматы, наиболее соответствующие задачам, решаемым конкретной ECDIS. Однако в любом случае ECDIS должна иметь возможность приема (импорта) данных от гидрографических служб в формате S-57 и преобразования (конвертации) их во внутренний формат, который согласно специальной публикации ИМО должен сохранять логическую структуру и состав информации S-57. Цифровые данные карты, представленные во внутреннем формате ECDIS, называются системными данными электронной карты.
Формат S-57 обладает большими возможностями, он совместим с другими средствами обмена данными и не ориентирован на определенную разграфку (нарезку) карт. Формат S-57 сочетает в себе свойства гибкости и компактности! Он позволяет поддерживать несколько уровней обмена цифровыми данными, представлять место объекта в географической или прямоугольной системах координат с различными единицами и мерами точности, строить карты в различных проекциях, хранить описательную информацию для наборов данных, добавлять новые записи.
Следует отметить, что вторая версия формата S57 называлась DX90. Для неофициальных ЭК требования S-57 не являются обязательными. Электронные карты начали производиться частными фирмами и гидрографическими организациями еще до введения требований к ECDIS. Каяодая из этих организаций использовала свой определенный формат. Фирма "С-Мар" представляет свои ЭК в совместимом с S-57 формате СМ93, Южно-Африканская гидрография при создании своих первых векторных ЭК использовала формат IFF, Финская гидрография создала свои первые карты в формате FINGIS, Канадская гидрографическая служба - в формате ALL. Крупный производитель векторных ЭК фирма «Транзас Марин» производит карты в своем, совместимом с S-57 цифровом формате.
Для обмена картографической информацией по каналам телесвязи разработан специальный формат MACDIF (Map and chart data inter change format).
1.6 Отображение ЭК на экране дисплея
Для повышения безопасности мореплавания и обеспечения возможности быстрого принятия правильных и обоснованных решений судоводителю в наглядном и легко интерпретируемом виде должна представляться информация, характеризующая все стороны процесса судовождения. Основой такой интегрированной информации является электронная карта.
Касаясь отображения самой ЭК, следует отметить следующее. При построении навигационных ЭК на экране дисплея долж
Список литературы
1. Буров Н.И. Электронная навигация и картография. Под редакцией Козыря Л.А.: ОГМА. -Одесса, 1996-26 с.
2. Вагущенко Л.Л., Кошовий А.А. Автоматизовані комплекси судноводіння. - Київ, КВЩ, 2000. - 292 с.
3. Гофман, Велингоф, Лихтенегер. Глобальная система определения местоположения GPS. Теория и практика. - Киев, Наукова думка, 1996.
4. Кудряшов С., Михайлов В. Пора менять курс /Судоходство, N4-6,. 1995,с.35-37.
5. Руководства оператора систем с электронными картами: "Navy Master", "Navy Sailor", "Горизонт", "DKART Navigator", " DKART Explorer".
6. Электронные карты в. морской навигации: Обзоры по судостроительной технике/ЦНИИ "РУМБ".-Л.. 1989.-130 с.
7. Admiralty List of Radio Signals, Vol. 8, Satellite Navigation Systems. 1998/99.-82 p.
8. N. Bowditch /The American Practical Navigator, Defence Mapping Agency, 1995 Edition.
9. Bridge Procedures Guide, Third edition, Marisec Publications, 1998.
10. Resolution IMO A.817(19) adopted on 23 November 1995. Performance standards for electronic chart display and information systems (ECDIS), 15 p.
11. IMO, SN/Circ.207. - Differences between RCDS and ECDIS. - 7 Jun, 1999.
12. IMO, SN/Circ.213. -Guidance on Chart datums and accuracy of positions on charts. - 31 May, 2000.
13. IHO Special Publication S-57: IHO Transfer Standard for Digital Hydrographic Data, edition 3, Nov 1996
14. IHO Special Publication S-52: Specification for Chart Content and Display of ECDIS, Edition 5, Dec 1996
15. IEC International Standard 61174, - «Maritime navigation and Radiocommunication Equipment systems - Electronic Chart Display and Information Systems (ECDIS) - Operational and performance requirements, methods of testing and required results», 1998.
16. IEC Protocol 61162-1 "Digital Interfaces - .Navigation and Radiocommunication Equipment On Board Ship".
ПРИЛОЖЕНИЕ 1.
Список горизонтальных датумов
1 ABIDJAN, IVORY 31 CASTANIA
2 ADINDAN 32 CASTELO DI SAO JORGE
(LISBOA) (BESSEL)
3 AFGOOYE 33 CENTRAL AMERICA
4 AIN ELABD70 34 CHATHAM 1971
5 ALASKA 35 CHAU ASTRO
6 ANNA 1 AS.65 36 CORREGO ALLEGRE
7 ANTIGUA 37 CYPRUS
8 ARC (1950), AFRICA 38 DABOLA
9 ARC (1960) 39 DJAKARTA (BATAVIA)
10 AS.BEACON "E" 40 DOS 1968
11 AS.DOS 71/4 41 EASTER ISL.67
12 AS.STATION 52 42 EGYPT
13 AS.TERN ISL 43 EUROPEAN 1950 (ED50)
14 ASCENS.ISL.58 44 EUROPEAN 1979
15 ASTRO 1956 (SPEDRO, 45 F.THOMAS 1955
PAULO, ATOL DE ROCAS)
16 AUSTRALIAN GEODETIC . 46 FALKLAND ISLANDS (1943)
1966 (SAPPER HILL)
17 AUSTRALIAN GEODETIC 47 FIJI (1956)
1984
18 AYABELLE 48 Fin (1986)
19 BATHURST BASE EAST 49 FINAL (1958), IRAN
END DATUM
20 BERMUDA 1967 50 FINNISH (HELSINKI)
21 BISSAU BASE NORTH 51 GAN 1970
WEST END PILLAR
22 BOGOTA OBSERVATORY 52 GANDAJIKA BASE
23 BUKIT RIMPAH, BANGKA I, 53 GEODETIC DATUM (1949)
INDONESIA
24 C.CANAVERAL 54 GHANA
25 CAMP AREA AS 55 GRACIOSA BASE
26 CAMPO INCHAUSPE 56 GUADAICANAL, SOLOMON
IS GUX 1 ASTRO
27 CANADA 57 GUAM 1963
28 CANTON AS.66 58 GUNUNG SEGARA
29 CAPE DATUM, SOUTH 59 HAWAII
AFRICA
30 CARTHAGE 60 HERAT NORTH
61 HERMANSKOGEL 91 MPORALOKO
(VIENNA)
62 гато xyiii astro, prov s 92 МАНЕ 1971
CHILEAN 1963
63 HJORSEY 1955 93 MARTINIQUE SHOM (1984)
64 HONG KONG (1963) 94 MASSAWA
65 HU-TZU-SHAN 95 MAURI
66 IGN (NORTH BLOCK, 96 MERCHICH, MOROCCO
BELLEVUE)
67 IGN (SOUTH BLOCK, 97 MERCURY 1960
TANNA)
68 IGN 47-49 REUNION 98 MIDWAY AS.61
69 IGN72 NOUVELLE 99 MINNA
CALEDONIE
70 INDIAN (SURVEY OF 100 MONTE MARIO( 1940)
INDIA)
71 INDIAN DATUM (1975) 101 MONTSERRAT 58
THAILAND
72 IRAN 102 NAHRWAN REVISED
73 IRELAND (1965) 103 NAHRWAN,SAUDI ARABIA
74 ISTS 73 AS.69 104 NANKING 1960
75 ISTSAS.1968 105 NAPARIMA(1955)
76 ITARARE N BASE, 106 NEW PORTO SANTO
ITAJUBA-SANTA
CATARINA
77 JONSTON1961 107 NORTH AMERICAN
DATUM 1927 (NAD27)
78 KANDAWALA(1933) 108 NORTH AMERICAN
DATUM 1983 (NAD83)
79 KAUAI 109 NORWEGIAN
80 KERGUELEN1949 110 OAHU
81 KERTAU1948 111 OBSER VAT. 1996
82 KERTAU REVISED 112 OLD EGYPTIAN
83 KUSA1EAS.51 113 OLD HAWAIIAN
84 L.C.5 ASTRO 114 OMAN
85 LE POUCE, MAURITIUS 115 ORDNANCE SURVEY OF
GREAT BRITAIN, 1936
86 LEIGON 116 ORDNANCE SURVEY OF
IRELAND
87 LIBERIA 1964 117 ORDNANCE SURVEY OF
IRELAND
88 LISBOA (SAO JORGE) [INT] 118 P.TO SANTO
85 LUSON(1911) 119 PANAMA COLON
90 M.MERCURY 68 120 PHARE D" YABELLE
121 PICO DE LA NIEVES 146 SICILY
122 PICO NIEVES 147 SIERRA LEONE (1960)
123 PITCAIRN ASTRO 1967 148 SOUTH AMERICAN (1956)
124 POINT 58 149 SOUTH AMERICAN (1969)
125 POLISH 150 SOUTH ASIA
126 PORT ETIENNE, 151 SOUTH EAST ISLAND
MAURITANIA
127 POTSDAM 152 SWEDISH
128 PRINCIPE.SINAL 153 SWISS CH. 1903
DOMORRO DO PAPAGAJO
129 PROVISIONAL SOUTH 154 TANANARIVE
AMERICAN (1956) PSAD56 OBSERVATORY 1925
130 PRV.S.CHIL.63 155 TIMBALAI (1948) (BESSEL)
SABAH
131 PTE.NOIRE 156 TIMBALAI (1948)
(EVEREST) SARAWAK,
BRUNEI
132 PUARTO RICO 157 TOBAGO (MT DILLON)
133 PULKOVO 1942 SYSTEM 158 TOKYO
134 PZ90 (SGS90 - Soviet 159 TRISTAN 1968
Geocentric Coordinate System
1990)
135 QATAR NATIONAL 160 VITI LEVU 16
136 QORNOQ 161 VOIROL 1875
137 ROME 1940 162 WAKEISL. 1952
138 RT90 (Швеция) 163 WAKE-ENIWETOK
139 SAINTE ANNE I IGN (1951- 164 WORD GEODETIC
52)GUADEOLUPE SYSTEM, 1960 (WGS60)
140 SANTO (DOS) 65 165 WGS66
141 SAOBRAZ 166 WGS72
142 SAO TOME 167 WGS84
143 SAPPER H. 43 168 YACARE
144 SCHWARZECK 169 ZANDERIJ
145 SELVAGEM1938
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы