Экстремальные состояния вещества - Курсовая работа

бесплатно 0
4.5 62
Современные достижения и объективные ограничения в исследованиях экстремальных состояний вещества. Экстремальные состояния вещества. Состояние вещества в ходе ядерных, термоядерных и пикноядерных реакций. "Черные дыры".

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Свойства вещества в состояниях с необычно высокой концентрацией энергии (такие состояния и соответствующие им внешние условия и называют экстремальными) всегда представляли значительный интерес в различных разделах физики и смежных наук - астрофизики, геофизики, некоторых прикладных дисциплин. В последние годы исследования экстремальных состояний вещества приобрели особенно большое значение: возник ряд важных практических задач (таких, как осуществление контролируемого термоядерного синтеза или получение сверхтвердых материалов), экстремальные условия стали создавать новыми методами, в природе были открыты новые экстремальные состояния (нейтронное вещество в пульсарах).Целесообразно начать с рассмотрения диаграммы состояния вещества в координатах "температура - давление" (см. рис.1). К данной диаграмме мы будем возвращаться на протяжении всей работы, поскольку она представляет, хоть и весьма схематично, графическую квинтэссенцию всего того, что известно об области экстремальных состояний вещества на сегодняшний день. Нет нужды разъяснять, что, подводя энергию к веществу нагреванием, мы можем судить о концентрации энергии по температуре. Но о том, что мерой концентрации энергии может служить и давление, следует сказать несколько поясняющих слов. Значит, концентрация энергии в веществе определяется также и приложенным к нему давлением.Теперь проанализируем различия, существующие между разными состояниями вещества, чтобы в сравнении уяснить специфические особенности, характерные именно для экстремальных состояний вещества.Плазмой называют газ, ионизированный до такой степени, что электрические силы притяжения, действующие между электронами и положительными ионами, препятствуют заметному разделению зарядов. Условие квазинейтральности означает, во-первых, малость суммарного заряда плазмы по сравнению с суммой зарядов одного знака; во-вторых, подразумевается электрическая нейтральность плазмы в среднем в достаточно больших объемах или за достаточно большие промежутки времени. В процессе хаотического движения при столкновениях с ионами электроны отдают им долю своей энергии, так что в стационарном состоянии устанавливается некоторое равновесие между приобретаемой и отдаваемой энергией. Распределение электронов и ионов можно описать максвеловским законом распределения и характеризовать некоторой средней полной скоростью, так что средняя энергия электронов и ионов может характеризоваться некоторой температурой соответственно Te и T : В слабых полях и в установившихся режимах энергии электронной и ионной составляющих плазмы равны между собой и равны энергии нейтральных молекул Te=T =T. Это состояние отвечает полному термодинамическому равновесию, а плазма называется соответственно равновесной.Можно двинуться к высоким давлениям вдоль нее, но мы выберем третью линию - границу "жидкость - газ". При условиях, соответствующих точкам пограничных линий, фазы находятся в равновесии; при условиях, соответствующих тройной точке, система состоит из твердой, жидкой и газообразной фазы одновременно. В критической точке жидкость и пар становятся тождественными по своим физическим свойствам; за этой точкой эти две фазы неразличимы. Но такой порядок физики не зря называют ближним: дальние соседи движутся друг относительно друга совершенно хаотически, как атомы газа, - время от времени каждый атом меняет своих соседей. Схематическое изображение траекторий движения частиц в газе (а), жидкости (б) и кристалле (в), при условии, что положения частиц во всех фазах фиксируются через равные промежутки времени.Когда температура и давления становятся достаточно большими, в веществе начинаются ядерные превращения, идущие с выделением энергии. Слово "ядерный", употребленное в предыдущих фразах, мы часто снабжаем приставкой "термо", не задумываясь, не подозревая, что тем самым выделяем среди ядерных процессов лишь часть, на нашей диаграмме соответствующую зоне, принадлежащей к оси температур ("терме" по-гречески означает "тепло, жар"). Обладаю ею, сближающиеся в полете ядра смогут преодолеть силы кулоновского отталкивания и слиться друг с другом (при их слиянии выделится высокая энергия, характерная для экзотермических ядерных превращений). Впрочем, благодаря так называемому туннельному эффекту ядра смогут слиться и тогда, когда их кинетическая энергия и недостаточна для сближения "до касания". Плотность становится все выше - и при сближении ядер наряду с их взаимным отталкиванием все сильнее начинает проявляться кулоновское взаимодействие налетающих ядер с соседями партнеров; соседи не подпускают налетающие ядра к их возможному партнеру по реакции, экранируют его.Образуется отдельная фотонная компонента вещества, находящаяся в равновесии с прочими компонентами - ядерной и электронной. Двумя порядками выше начинается область термической диссоциации вещества: тяжелые ядра разваливаются на более легкие и нейтроны (в веществе появляется нейтронная компонента), при более высоких

План
Оглавление

Введение ……………………………………………………………………………………. 1

1. Современные достижения и объективные ограничения в исследованиях экстремальных состояний вещества …………………………………………………….1

2. Экстремальные состояния вещества ……………………………………………..…….. 6

2.1. Основные понятия и принципы физики плазмы ……………………………..……….6

2.2. Сравнительный анализ различных состояний вещества ……………………………..9

3. Состояние вещества в ходе ядерных, термоядерных и пикноядерных реакций …….15

4. Верхняя граница области экстремальных состояний вещества ………………………18

5. «Черные дыры» как объекты, состоящие из вещества в экстремальном состоянии ……………………………………………………………………………………21

6. Вещество и пространство в условиях гравитационного коллапса ……………………25

7. Эволюция вещества черных дыр ………………………………………………………..29

Заключение ………………………………………………………………………………….30

Список литературы …………………………………………………………………..……. 32

Введение
Свойства вещества в состояниях с необычно высокой концентрацией энергии (такие состояния и соответствующие им внешние условия и называют экстремальными) всегда представляли значительный интерес в различных разделах физики и смежных наук - астрофизики, геофизики, некоторых прикладных дисциплин. В последние годы исследования экстремальных состояний вещества приобрели особенно большое значение: возник ряд важных практических задач (таких, как осуществление контролируемого термоядерного синтеза или получение сверхтвердых материалов), экстремальные условия стали создавать новыми методами, в природе были открыты новые экстремальные состояния (нейтронное вещество в пульсарах).

Говоря об экстремальных состояниях вещества и экстремальных внешних условиях, о сверхвысокой концентрации энергии, имеют в виду прежде всего сверхвысокие температуры и сверхвысокие давления, которые действуют на вещество.

Нагревание и сжатие вещества можно изучать порознь. Каждый из процессов по-своему изменяет состояние вещества. Цель данной работы - дать общее представление об области экстремальных состояний в целом, а также рассмотреть результаты наиболее любопытных исследований экстремальных состояний вещества.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?