Природні джерела випромінювання, теплове випромінювання нагрітих тіл. Газорозрядні лампи високого тиску. Переваги і недоліки різних джерел випромінювання. Стандартні джерела випромінювання та контролю кольору. Джерела для калібрування та спектроскопії.
Пряма задача спектроскопії - прогнозування виду спектру даної речовини виходячи зі знань про її будову, склад та інше. Зворотне завдання оптичної спектроскопії - визначення характеристик речовини (що не являється безпосередньо спостережуваною величиною) за властивостями її спектрів (які спостерігаються безпосередньо і прямо залежать як від обумовлених характеристик, так і від зовнішніх факторів). Тому саме оптична спектроскопія використовується в даний час дуже широко для отримання інформації про речовину і служить для обґрунтування вибору принципових схем спектральних приладів та оптимізації методів розрахунку.Однією із форм енергії являється оптичне випромінювання, виникнення якого повязане зі змінами енергетичних станів електронів в атомі, а також із хвильовим чи обертальним рухом молекул, що входять в склад випромінювального тіла. З фізичної точки зору будь яке тіло, яке здатне випромінювати енергію в навколишнє середовище, можна назвати джерелом випромінювання.Під тепловим випромінюванням розуміють випромінювання, яке виникає внаслідок теплового збудження атомів і молекул. Воно випромінюється всіма тілами при температурах, відмінних від абсолютного нуля, і характеризується температурою тіла. На малюнку праворуч видно, що при потужностях, відповідних нормальному режиму роботи лампи, при 2 мкм має місце різко виборче випромінювання, а другий максимум при 6 мкм, що був раніше зникає. Застосовуються такі лампи, як правило, в побутовому і декоративному освітленні, а також там, де до висвітлення не предявляють особливих вимог, а споживання та термін служби ламп не є визначальними факторами. При температурі, близької до температури нагрітої нитки лампи, галогенід вольфраму розпадається на галоген і відновлений вольфрам, який частково осідає на спіралі.Його світловий потік визначається свіченням люмінофора під впливом ультрафіолетового випромінювання, яке виникає внаслідок електричного розряду. З середини стінка колби покрита сумішшю люмінесцентних порошків, яка називається люмінофор. Лампи з трьох-смуговим люмінофором більш економічні, оскільки світлова віддача у них становить (до 104 Лм / Вт), але володіють найгіршою передачею кольору (Ra = 80), а лампи з пяти-полісним люмінофором мають відмінну передачу кольору (Ra = 90-98) при меншій світловий віддачі (до 88 Лм / Вт). Існує два способи запалювання люмінесцентних ламп - електромагнітним та електронним баластом. Основною відмінністю люмінесцентного світильника з електронним баластом від такого ж світильника з електромагнітним баластом, крім енергозбереження, ваги та обєму, є частота мерехтіння: Лампи з електронним баластом працюють з високою частотою мерехтіння близько 42000 Гц в секунду, тоді як лампи з електромагнітним баластом працюють з частотою 100 Гц в секунду, що при тривалому використанні викликає втому очей.У нашому кліматичному поясі для архітектурного (зовнішнього) освітлення краще використовувати саме газорозрядні лампи, оскільки вони відмінно працюють при мінусовій температурі. Металогалогенні лампи - це ртутні лампи високого тиску, в яких використовуються добавки із йодидів металів, у тому числі рідкоземельних, а також складні зєднання цезію та галогеніди олова. Зазвичай лампи випромінюють характерний жовтий колір, але якщо до складу запалюваної речовини входить ксенон, вони дають яскраве біле світло. Електрична енергія у лампі перетворюється в світлову при горінні електричного дугового розряду, створеного між двома електродами в атмосфері ксенону, світло такої лампи легко сформувати в точний світловий пучок. Основні переваги ксенонових ламп в порівнянні з традиційними галогенними: висока світловіддача, світловий потік, випромінюваний ксеноновим лампою (більше 3000 люмен) майже в 2 рази інтенсивніший за порівняно зі звичайною галогенною лампою розжарювання потужністю 55 Вт (1550 люмен).Особливу увагу хотілося приділити світлодіодам, які продукують великий світловий потік, як правило, ці світлодіоди з потужністю від 1 Вт до Дані джерела світла мають достатньо велику світловіддачу, що наближається вже до значення світловіддачі газорозрядних ламп, великий термін служби, компактні розміри і досить велика яскравість. Всі ці властивості відкривають нові можливості застосування світлодіодів, як для загального, так і для прожекторного освітлення. Завдяки відсутності тіла розжарювання світлодіоди відрізняються високим ККД і великим терміном служби (80 000 - 100 000 годин). Світлодіоди випускають випромінювання з вузьким спектром, довжина хвилі якого залежить від напівпровідникового матеріалу і від способу його легування.До переваг ламп розжарювання слід віднести: зручність експлуатації, суцільний спектр, що забезпечує в багатьох випадках прийнятне перенесення кольорів; відпрацьовану технологію виготовлення ламп в широкому діапазоні потужностей; малу вартість; достатньо високу надійність. Недоліками ламп розжарювання є низька світлова віддача (світловий ККД освітлювальних ламп становить 1-3%, тобто лампи розжарення є малоекономічними джерелами світла); д
План
Зміст
Вступ
1. Джерела випромінювання
1.1 Природні джерела випромінювання, теплове випромінювання нагрітих тіл
1.2 Люмінесцентна лампа
1.3 Газорозрядні лампи високого тиску
1.4 Напівпровідникові світлодіоди
2. Переваги і недоліки різних джерел випромінювання
3. Стандартні джерела випромінювання та контролю кольору
4. Джерела випромінювання для калібрування та спектроскопії
4.1 Характеристика лампи ДРШ-100-2
4.2 Лампа ДНАС-18
Висновки
Список використаної літератури
Додатки
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы