Чисельні методи рішення диференціальних рівнянь у частинних похідних 2-го порядку, початкові і крайові умови. Метод сіток та представлення часткових похідних у скінчено-різницевому вигляді. Структура похибки розв"язку задачі, стійкість і коректність.
При низкой оригинальности работы "Дослідження збіжності рішень для диференціальних рівнянь у частинних похідних, отриманих методом сіток", Вы можете повысить уникальность этой работы до 80-100%
Тому побудова різницевих схем, властивості яких якнайповніше відповідають вихідній диференціальній задачі, - суть і предмет методу скінчених різниць, а розвиток теорії різницевих схем природно шукають у покращенні порядку апроксимації, а також у зменшенні кількості арифметичних операцій для знаходження розвязків. Побудова різницевих схем для рівнянь у частинних похідних з узагальненими розвязками, швидкість збіжності яких узгоджена з гладкістю цих розвязків, привертає сьогодні особливу теоретичну увагу. Рівняння (1) називається лінійним, якщо воно першого степеня щодо шуканої функції і всіх її похідних і не містить їхніх добутків, тобто це рівняння може бути записане у вигляді Через велику розмаїтість типів і розмірів сіток, видів рівнянь у часткових похідних, граничних і початкових умов, можливих кінцево-різницевих апроксимацій цих рівнянь і методів їхнього розвязку, чисельне розвязку рівнянь у часткових похідних вимагає модифікацій алгоритму при розгляді кожного конкретного приклада. Віднімаючи з рівняння (7) рівняння (6), для похибки одержимо скінчено-різницеве рівняння.На жаль, явне рішення цих рівнянь в аналітичному вигляді виявляється можливим тільки в окремих простих випадках, і, як результат, можливість аналізу математичних моделей, побудованих на основі диференціальних рівнянь, забезпечується за допомогою наближених чисельних методів рішення. Стосовно самої теми курсової роботи, треба відзначити, що збіжність рішень ДРЧП досягається, в першу чергу через теорему Лакса - апроксимація стійкість породжує збіжність.
Вывод
Диференціальні рівняння в частинних похідних є широко вживаним математичним апаратом при розробці моделей в самих різних областях науки і техніки. На жаль, явне рішення цих рівнянь в аналітичному вигляді виявляється можливим тільки в окремих простих випадках, і, як результат, можливість аналізу математичних моделей, побудованих на основі диференціальних рівнянь, забезпечується за допомогою наближених чисельних методів рішення. Обєм виконуваних при цьому обчислень звичайно є значним і використовування високопродуктивних обчислювальних систем є традиційним для даної області обчислювальної математики. Проблематика чисельного рішення диференціальних рівнянь в частинних похідних є областю інтенсивних досліджень.
Стосовно самої теми курсової роботи, треба відзначити, що збіжність рішень ДРЧП досягається, в першу чергу через теорему Лакса - апроксимація стійкість породжує збіжність. Також треба зазначити, що на збіжність також впливає, хоча і в меншій мірі, вибір кроку розбиття сітки, а також різноманітні похибки, хоча вони і не значно впливають на розвязок, проте дещо спотворюють його. Тому, щоб досягти найбільш точного і оптимального рішення потрібно враховувати всі фактори, що можуть впливати на збіжність і точність даного розвязку.