Теорема дискретизации или Котельникова. Соотношение между непрерывными сигналами и значениями этих сигналов лишь в отдельные моменты времени – отсчетами. Получение спектра дискрeтизованной функции. Дискретизация реальных сигналов (речь, музыка).
Эта теорема позволяет установить соотношение между непрерывными сигналами, какими являются большинство реальных информационных сигналов - речь, музыка, электрические сигналы, соответствующие телевизионным изображениям, сигналы в цепях различных радиотехнических систем и т.п., и значениями этих сигналов лишь в отдельные моменты времени - так называемыми отсчетами. Теорема дискретизации, или, как ее еще называют, теорема Котельникова, теорема Уитекера, формулируется следующим образом: непрерывная функция Х(t) с ограниченным спектром, то есть не имеющая в своем спектре Доказательство сформулированной теоремы основывается на однозначном соответствии между сигналами и соответствующими им спектрами. Иными словами, если сигналы одинаковы, то и соответствующие им спектры также одинаковы.
Список литературы
Лидовский В.И. Теория информации. - М., "Высшая школа", 2002г. - 120с.
Метрология и радиоизмерения в телекоммуникационных системах. Учебник для ВУЗОВ. / В.И. Нефедов, В.И. Халкин, Е.В. Федоров и др. - М.: Высшая школа, 2001 г. - 383с.
Цапенко М.П. Измерительные информационные системы. - . - М.: Энергоатом издат, 2005. - 440с.
Зюко А.Г., Кловский Д.Д., Назаров М.В., Финк Л.М. Теория передачи сигналов. М: Радио и связь, 2001 г. -368 с.
Б. Скляр. Цифровая связь. Теоретические основы и практическое применение. Изд.2-е, испр.: Пер. с англ. - М.: Издательский дом "Вильямс", 2003 г. - 1104 с.
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы