Основы методов математического программирования, необходимого для решения теоретических и практических задач экономики. Математический аппарат теории игр. Основные методы сетевого планирования и управления. Моделирование систем массового обслуживания.
В сельском хозяйстве непрерывно протекают разнообразные экономические процессы, в результате которых складываются определенные производственные результаты, формируются экономические явления. Большое число планово-производственных и экономических задач связано с распределением каких-либо, как правило, ограниченных ресурсов. Основная цель написания реферативно-прикладного исследования - ознакомиться с основами методов математического программирования, необходимого для решения теоретических и практических задач экономики.Такую модель называют игрой. Стороны, участвующие в игре, называют игроками. В игре могут участвовать двое, тогда она называется парной. Игра представляет собой мероприятие, состоящие из ряда действий двух игроков, определяемых правилами игры. Посредством соответствующего преобразования такая игра может быть превращена в игру с нулевой суммой.Например, организация нормального процесса обслуживания покупателей связана с правильным определением следующих показателей: количества предприятий данного торгового профиля, численности продавцов в них, наличия соответствующих основных фондов, частоты завоза товаров, численности обслуживаемого населения, плотности обращаемости и потребности в соответствующих товарах. Каждая СМО имеет одно или несколько обслуживающих устройств, называемых каналами обслуживания (каналы связи, ремонтные бригады, краны, бензоколонки, продавцы, кассиры, парикмахеры, станки), и предназначена для обслуживания - выполнения потока заявок, требований, поступающих в систему большей частью в случайные моменты времени. Задача теории массового обслуживания состоит в выработке рекомендаций по рациональному построению СМО, рациональной организации их работы и регулированию потока заявок с целью обеспечить более высокую эффективность обслуживания при малых затратах на создание и функционирование системы. Для этого теория массового обслуживания устанавливает зависимости между характеристиками потока заявок, числом и производительностью каналов обслуживания и «выходными» характеристиками СМО, описывающими результаты ее работы. Обслуживание очереди (дисциплина очереди) может быть упорядоченным, т. е. строго в порядке поступления заявок, случайным, когда заявки обслуживаются в некотором случайном порядке, и с приорететами, когда в первую очередь обслуживаются заявки, обладающие некоторыми признаками.Вместе с этим динамическим программированием называют особый математический метод оптимизации решений, специально приспособленный к многошаговым процессам. Многошаговым обычно считают процесс, развивающийся во времени и распадающийся на ряд «шагов», или «этапов». Некоторые процессы распадаются на шаги естественно (например, процесс планирования хозяйственной деятельности предприятия на отрезок времени, состоящий из нескольких лет); многие процессы можно разделить на этапы искусственно. Суть метода динамического программирования состоит в том, что вместо поиска оптимального решения сразу для всей сложной задачи предпочитают находить оптимальные решения для нескольких более простых задач аналогичного содержания, на которые расчленяется исходная задача. Из всего сказанного следует, что поэтапное планирование многошагового процесса должно производиться так, чтобы при планирование каждого шага учитывалась не выгода, получаемая только на данном шаге, а общая выгода, получаемая по окончании всего процесса, и именно относительно общей выгоды производится оптимальное планирование.Сетевое планирование и управление возникло в 1957 - 1958 гг. под названием «метод критического пути» и метод PERT (метод оценки и пересмотра планов). Методы сетевого планирования и управления предусматривают: 1) представление планов в виде сети; Применение сетевого планирования и управления в сельском хозяйстве носит пока еще экспериментальный характер и ограничивается составлением планов на короткие напряженные рабочие периоды. Методы сетевого планирования и управления дают возможность: 1) заранее планировать все действия, которые необходимо предпринять для достижения желаемого результата в будущем; 4) проверить ход выполнения работ по плану после того, как план приведен в действие;На данной сети дорог имеется несколько маршрутов, по которым можно доставлять груз из пункта 1 в пункт 10 (рис. Требуется в системе дорог выбрать маршрут доставки груза из пункта 1 в пункт 10, которому соответствует наименьшие затраты. рис. К группе I отнесем пункт 1, к группе II - пункты, в которые можно попасть из пункта 1 (таковыми будут 2; 3; 4), к группе III отнесем пункты, в которые можно попасть непосредственно из любого пункта группы II (таковыми будут 5; 6; 7), и т.д. в результате движение транспорта с грузом из пункта 1 в пункт 10 примет поэтапный характер: на первом этапе транспорт перемещается из пункта 1 в какой-то пункт группы II, на втором этапе - из пункта группы II в пункт группы III и т.д. Применительно к рассматриваемой задаче принцип оптимальности можно сформулировать так: оптимальный маршрут доставки груза из пункта 1 в пункт 10 о
План
Содержание
I Цель работы
II Теоретические вопросы
2.1 Теория игр
2.2 Теория массового обслуживания
2.3 Динамическое программирование
2.4 Сетевое планирование и управление
III Практическое применение динамического программирования
IV Выводы по результатам работы
Список литературы
I Цель работы
Список литературы
1. Баканов М.И., Шеремет А.Д. Теория экономического анализа: Учебник. - 4-е изд., доп. и перераб. - М.: Финансы и статистика, 1999
2. Браславец М.Е. Экономико-математические методы в организации и планировании сельскохозяйственного производства, 1974
3. Кравченко Р.Г., Попов И.Г., Толпекин С.З. Экономико-математические методы в организации и планировании сельскохозяйственного производства, 1974