Дослідження особливостей скалярного та векторного полів. Похідна за напрямом. Градієнт скалярного поля, потенціальне поле. Сутність дивергенції, яка характеризує густину джерел даного векторного поля в розглянутій точці. Ротор або вихор векторного поля.
При низкой оригинальности работы "Диференціальні операції в скалярних і векторних полях. Основні поняття і формули", Вы можете повысить уникальность этой работы до 80-100%
Поверхня (лінія), на якій функція набуває одне й те саме значення, називається поверхнею (лінією) рівня скалярного поля (наприклад, поверхні або лінії постійної температури). Кажуть, що в області задано векторне поле, якщо кожній точці поставлено у відповідність деякий вектор . Фізичні приклади векторних полів: електричне поле системи електричних зарядів, яке характеризується в кожній точці вектором напруженості ; магнітне поле, утворене електричним струмом і яке характеризується в кожній точці вектором магнітної індукції ; поле тяжіння, утворене системою мас і яке характеризується в кожній точці вектором сили тяжіння , що діє в цій точці на одиничну масу; поле швидкостей потоку рідини, яке описується в кожній точці вектором швидкості . Вектор називається похідною векторного поля (вектор-функції ) в точці за напрямом і позначається символом . Інакше кажучи, вектор в даній точці вказує напрям найбільшого зростання поля (функції ) у цій точці, а є швидкість зростання функції в цьому напрямі.
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы