Auto-associative models as a new tool for building nonlinear principal component analysis methods. The successive approximations of a dataset by manifolds of increasing dimensions. The theoretical comparison between PCA and auto-associative models.
При низкой оригинальности работы "Auto-Associative Models, Nonlinear Principal Component Analysis, Manifolds and Projection Pursuit", Вы можете повысить уникальность этой работы до 80-100%